# Searching 



Tiziana Ligorio
Hunter College of The City University of New York

## Today's Plan



Midterm discussion
Searching algorithms and their analysis

## Announcements

- MIDTERM:
- Solutions will be posted after we finish grading
- Regrade requests
- No curve, but question-level adjustments may occur as a result of regrading


## Searching

## Looking for something! In this discussion we will assume searching for an element in a vector/array

## Linear search

## Most intuitive

Start at first position and keep looking until you find it

```
template <class Comparable>
int linearSearch(const std::vector<Comparable>& a, const Comparable& value)
    for (int i = 0; i < a.size(); i++)
    {
        if (a[i] == value) {
        return i;
        }
    }
    return-1;
}
```


## How long does linear search take?

If you assume value is in the array and probability of finding it at any location is uniform, on average $\mathrm{n} / 2$

If value is not in the array (worst case)
Either way it's $O(n)$

## What if you know array is sorted? <br> Can you do better than linear search?

## Lecture Activity

You are given a sorted array of integers.
How would you search for 115? ( try to do it in fewer than n steps: don't search sequentially)

You can write pseudocode or succinctly explain your algorithm



## Binary Search



## Binary Search

| 3 | 14 | 43 | 76 | 100 | 108 | 158 | 195 | 200 | 274 | 523 | 543 | 599 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
    int low = 0, high = v.size() - 1;
    while(low <= high)
    {
        int mid = (low + high) / 2;
        if(v[mid] < x)
            low = mid + 1; //search upper half
        else if (v[mid] > x)
            high = mid - 1; // search lower half
        else
            return mid; //found
    }
    return -1; //not found
}
```

| 3 | 14 | 43 | 76 | 100 | 108 | 158 | 195 | 200 | 274 | 523 | 543 | 599 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
    int low = 0, high = v.size() - 1;
    while(low <= high)
        int mid = (low + high) / 2;
        low = mid + 1; //search upper half
        else if (v[mid] > x)
            high = mid - 1; // search lower half
        else
            return mid; //found
    }
    return -1; //not found
}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 14 & 43 & 76 & 100 & 108 & 158 & 195 & 200 & 274 & 523 & 543 & 599 \\
\hline
\end{tabular}
```

template <class Comparable>
int binarySearch(const std::vector<Comparable>\& v, const Comparable\& x)
{
int low = 0, high = v.size() - 1;
while(low <= high)
{
int mid = (low + high) / 2;
if(v[mid] < x)
low = mid + 1; //search upper half
else if (v[mid] > x)
else
return mid; //found
}
return -1; //not found
}

```
```

\}
$\square$
low high mid

```

\section*{Binary Search}

What is happening here?

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Simplification: assume n is a power of 2 so it can be evenly divided in two parts
The running time
Let \(T(n)\) be the running time and assume \(n=2 k\)
\(T(n)=T(n / 2)+1\)

Search lower OR upper half

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2^{k}\)
\(T(n)=T(n / 2)+1\)
\(T(n / 2)=T(n / 4)+1\)


Search lower OR upper half of \(n / 2\)

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2 k\)
\(\begin{aligned} & T(n)= T(n / 2)+1 \\ & T(n / 2)=T(n / 4)+1\end{aligned}\)
\(T(n)=T(n / 4)+1+1\)

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2^{k}\)
\(T(n)=T(n / 2)+1\)
\(T(n)=T(n / 4)+2\)
...
\(2^{2}\)
2

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2 k\)
\(T(n)=T(n / 2)+1\)
\(T(n)=T(n / 4)+2\)
\(T(n)=T\left(n / 2^{k}\right)+k\)

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2 k\)
\(T(n)=T(n / 2)+1\)
\(T(n)=T(n / 4)+2\)
The number to which I need to raise 2 to get \(n\) And we said \(n=2^{k}\)
\(T(n)=T\left(n / 2^{k}\right)+k\)
\(T(n)=T(1)+\log _{2}(n)\)
\(n / n=1\)

\section*{Binary Search}

What is happening here?
Size of search is cut in half at each step
Let \(T(n)\) be the running time and assume \(n=2 k\)
\(T(n)=T(n / 2)+1\)
\(T(n)=T(n / 4)+2\)
\(T(n)=T\left(n / 2^{k}\right)+k\)
\(T(n)=T(1)+\log _{2}(n)\)

Binary search is \(\mathrm{O}(\log (\mathrm{n}))\)

\section*{Sorting}

Rearranging a sequence into increasing (decreasing) order!

\section*{Several approaches}

Can do it in many ways
What is the best way?
Let's find out using Big-O

\section*{Lecture Activity}

Write pseudocode to sort an array.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 543 & 3 & 523 & 76 & 200 & 158 & 195 & 108 & 43 & 274 & 100 & 14 & 599 \\
\hline
\end{tabular}

There are many approaches to sorting We will look at some comparisonbased approaches here

Next time: Sorting```

