
Sorting

1

Tiziana Ligorio
Hunter College of The City University of New York

Announcements

No tech-prep workshop today

We will resume next week

2

Plagiarism
Plagiarism is a serious problem

 - It seriously damages your future ability to have a successful career

Why do we care?

 - Your passing the course is an achievement that reflects your mastery
of certain knowledge and skills

 - If you plagiarize your way through college, that correlation no longer
holds and our degree becomes meaningless

 - There are many students doing hard work and achieving great results,
and we owe it to them that their degree will be regarded with respect

3

Today’s Plan

Recap

Sorting algorithms and
their analysis

4

Recap

•Linear search O(n)

•Binary search O(logn)

5

Sorting

6

Rearranging a sequence into increasing
(decreasing) order!

Several approaches

Can do it in many ways

What is the best way?

Let’s find out using Big-O

7

Last Time Lecture Activity

Write pseudocode to sort an array.

8

144376 100108158 195200 274523543 5993

Find your algorithm, I will ask you about it soon!!!

There are many approaches to sorting
We will look at some comparison-

based approaches here

9

Selection Sort

10

Selection Sort

11

Find smallest element and
move it at lowest position

Unsorted

Sorted

1st Pass

Selection Sort

12

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

1st Pass

Selection Sort

13

Find smallest element and
move it at lowest position

Unsorted

Sorted

1st Pass

Selection Sort

14

Find smallest element and
move it at lowest position

Unsorted

Sorted

Unsorted

2nd Pass

Selection Sort

15

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

2nd Pass

Selection Sort

16

Find smallest element and
move it at lowest position

Unsorted

Sorted

2nd Pass

Selection Sort

17

Find smallest element and
move it at lowest position

Unsorted

Sorted

3rd Pass

Selection Sort

18

Find smallest element and
move it at lowest position

Unsorted

Sorted

3rd Pass

Selection Sort

19

Find smallest element and
move it at lowest position

Unsorted

Sorted

4th Pass

Selection Sort

20

Find smallest element and
move it at lowest position

Unsorted

Sorted

4th Pass

Selection Sort

21

Find smallest element and
move it at lowest position

Unsorted

Sorted

5th Pass

Selection Sort

22

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

5th Pass

Selection Sort

23

Find smallest element and
move it at lowest position

Unsorted

Sorted

5th Pass

Selection Sort

24

Find smallest element and
move it at lowest position

Unsorted

Sorted

6th Pass

Selection Sort

25

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

Find the smallest item and move it at position 1

Find the next-smallest item and move it at position 2

. . .

26

Selection Sort Analysis

How much work?

Find smallest: look at n elements

27

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

28

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements
. . .

29

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements
. . .

Total work: n + (n-1) + (n-2) + . . . +1

30

31

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

Derivation

1 + 2 + 3 + … + (n-2) + (n-1) + n

n + (n-1) + (n-2) + … + 3 + 2 +1

Now add the two series together term by term.

(n+1) + (n-1+2) + (n-2+3) + … + (3+n-2) + (2+n-1) + (1+n)

= (n+1) + (n+1) + (n+1) + … + (n+1) + (n +1) + (n+1)

You have added (n+1) a total of n times, so the sum is n(n+1).

You added the series twice, so adding the series once will give you n(n+1)/2

32

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

33

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O()?

34

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O()?

35

Ignore constant

Ignore non-dominant terms

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O(n2)

36

Ignore constant

Ignore non-dominant terms

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O(n2)

Selection Sort run time is O(n2)

37

template <class Comparable>
void selectionSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 // first = index of the first item in the subarray of items yet
 // to be sorted;
 // smallest = index of the smallest item found
 for (int first = 0; first < size; first++)
 {
 // At this point, the_array[0 ...first-1] is sorted, and its
 // entries are <= those in the_array[first ... size-1].
 // Select the smallest entry in the_array[first ... size-1]
 int smallest_index = findIndexOfSmallest(the_array, first, size);

 // Swap the smallest entry, the_array[smallest_index], with
 // the first in the unsorted subarray the_array[first]
 std::swap(the_array[smallest_index], the_array[first]);
 } // end for
} // end selectionSort

38

template <class Comparable>
void selectionSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 // first = index of the first item in the subarray of items yet
 // to be sorted;
 // smallest = index of the smallest item found
 for (int first = 0; first < size; first++)
 {
 // At this point, the_array[0 ...first-1] is sorted, and its
 // entries are <= those in the_array[first ... size-1].
 // Select the smallest entry in the_array[first ... size-1]
 int smallest_index = findIndexOfSmallest(the_array, first, size);

 // Swap the smallest entry, the_array[smallest_index], with
 // the first in the unsorted subarray the_array[first]
 std::swap(the_array[smallest_index], the_array[first]);
 } // end for
} // end selectionSort

39

Pass
O(n)

O(n)

O(n2)

Stability

A sorting algorithm is Stable if elements that are
equal remain in same order relative to each other
after sorting

40

Selection Sort

41

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

42

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

43

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

Selection Sort

44

Find smallest element and
move it at lowest position

Unsorted

Sorted

Unstable

Selection Sort Analysis

Execution time DOES NOT depend on initial
arrangement of data => ALWAYS O(n2)

O(n2) comparisons

Good choice for small n and/or data moves are costly
(O(n) data moves)

Unstable

45

Understanding O(n2)

46

14 43100 200 2743

T(n)

Understanding O(n2)

47

14 43

76

100

108 158195

200 274

523 599

3

14 43100 200 2743

T(2n) ≈ 4T(n)

T(n)

(2n)2 = 4n2
Double data = Quadruple time

Understanding O(n2)

48

14 43

76

100

108 158195

200 274

523 599

3

14 43100 200 2743 11260 5642 932

T(n)

T(3n) ≈ 9T(n)

(3n)2 = 9n2
Triple data = Nonuple time

Understanding O(n2)
on large input

If size of input increases by factor of 100
Execution time increases by factor of 10,000
T(100n) = 10,000T(n)

49

Understanding O(n2)
on large input

If size of input increases by factor of 100
Execution time increases by factor of 10,000
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds
Sorting 10,000,000 takes 10,000 longer

50

Understanding O(n2)
on large input

If size of input increases by factor of 100
Execution time increases by factor of 10,000
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds
Sorting 10,000,000 takes 10,000 longer

Sorting 10,000,000 entries takes ≈ 2 days

Multiplying input by 100 to go from 17sec to 2 days!!!

51

Raise your hand if you had
Selection Sort

52

Bubble Sort

53

Bubble Sort

54

Compare adjacent elements
and if necessary swap them

Unsorted

Sorted

Bubble Sort

55

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

56

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

57

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

58

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

59

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

60

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

61

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

62

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

63

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

64

Compare adjacent elements
and if necessary swap them

End of1st Pass:
Not sorted, but largest has
“bubbled up” to its proper

position

Bubble Sort

65

Compare adjacent elements
and if necessary swap them

2nd Pass:
Sort n-1

Bubble Sort

66

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

67

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

68

Compare adjacent elements
and if necessary swap them

Swap

2nd Pass

Unsorted

Sorted

Bubble Sort

69

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

70

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

71

Compare adjacent elements
and if necessary swap them

3rd Pass:
Sort n-2

Bubble Sort

72

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

73

Compare adjacent elements
and if necessary swap them 3rd Pass

Swap
Array is sorted

But our algorithm doesn’t know
It keeps on going

Unsorted

Sorted

Bubble Sort

74

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

75

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

76

Compare adjacent elements
and if necessary swap them

4th Pass:
Sort n-3

Bubble Sort

77

Compare adjacent elements
and if necessary swap them 4th Pass

Unsorted

Sorted

Bubble Sort

78

Compare adjacent elements
and if necessary swap them 4th Pass

Unsorted

Sorted

Bubble Sort

79

Compare adjacent elements
and if necessary swap them

5th Pass:
Sort n-4

Bubble Sort

80

Compare adjacent elements
and if necessary swap them 5th Pass

Unsorted

Sorted

Bubble Sort

81

Compare adjacent elements
and if necessary swap them Done!

Unsorted

Sorted

Bubble Sort Analysis

How much work?

First pass: n-1 comparisons and at most n-1 swaps

Second pass: n-2 comparisons and at most n-2 swaps

Third pass: n-3 comparisons and at most n-3 swaps
. . .

Total work: (n-1) + (n-2) + . . . +1

82

83

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2 (n-1) + (n-2) + . . . + 2 + 1 = n(n-1)/2

 (n-1)

 n

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

84

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

85

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O()?

86
Ignore non-dominant terms

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O(n2)

Bubble Sort run time is O(n2)
87

Optimize!

Easy to check:
if there are no swaps in any given pass
 stop because it is sorted

88

Bubble Sort

89

Compare adjacent elements
and if necessary swap them

Bubble Sort

90

Compare adjacent elements
and if necessary swap them

Bubble Sort

91

Compare adjacent elements
and if necessary swap them

Bubble Sort

92

Compare adjacent elements
and if necessary swap them

Bubble Sort

93

Compare adjacent elements
and if necessary swap them

Bubble Sort

94

Compare adjacent elements
and if necessary swap them

Bubble Sort

95

Compare adjacent elements
and if necessary swap them

template <class Comparable>
void bubbleSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 bool swapped = true; // Assume unsorted
 int pass = 1;
 while (swapped && (pass < size))
 {
 // At this point, if pass > 1 the_array[size+1-pass … size-1] is sorted
 // and all of its entries are > the entries in the_array[0 ... size-pass]
 swapped = false;
 for (int index = 0; index < size - pass; index++)
 {
 // At this point, all entries in the_array[0 ... index-1]
 // are <= the_array[index]
 if (the_array[index] > the_array[index+1])
 {
 std::swap(the_array[index], the_array[index+1]); //swap
 swapped = true; // indicates array not yet sorted
 }// end if
 } // end for
 // Assertion: the_array[0 ... size-pass-1] < the_array[size-pass]

 pass++;
 } // end while
} // end bubbleSort

96

template <class Comparable>
void bubbleSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 bool swapped = true; // Assume unsorted
 int pass = 1;
 while (swapped && (pass < size))
 {
 // At this point, if pass > 1 the_array[size+1-pass … size-1] is sorted
 // and all of its entries are > the entries in the_array[0 ... size-pass]
 swapped = false;
 for (int index = 0; index < size - pass; index++)
 {
 // At this point, all entries in the_array[0 ... index-1]
 // are <= the_array[index]
 if (the_array[index] > the_array[index+1])
 {
 std::swap(the_array[index], the_array[index+1]); //swap
 swapped = true; // indicates array not yet sorted
 }// end if
 } // end for
 // Assertion: the_array[0 ... size-pass-1] < the_array[size-pass]

 pass++;
 } // end while
} // end bubbleSort

97

Pass
O(n)

O(n)

O(n2)

Bubble Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted bubble sort will stop after first pass
and no swaps => good choice for small n and data likely
somewhat sorted

98

Raise your hand if you had
Bubble Sort

99

https://www.youtube.com/watch?v=lyZQPjUT5B4

100

Insertion Sort

101

Insertion Sort

102

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

103

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

104

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

1st Pass

Insertion Sort

105

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

106

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

107

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

108

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

2nd Pass

Insertion Sort

109

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

110

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

111

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

112

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

113

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

114

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

115

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

116

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

117

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

118

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

119

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

120

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

4th Pass

Insertion Sort

121

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

4th Pass

Insertion Sort

122

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

123

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

124

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

5th Pass

Insertion Sort

125

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

126

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

127

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort Analysis

How much work?

First pass: 1 comparison and at most 1 swap

Second pass: at most 2 comparisons and at most 2 swaps

Third pass: at most 3 comparisons and at most 3 swaps
. . .

Total work: 1 + 2 + 3 + . . . + (n-1)

128

129

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2 1 + 2 + . . . (n-2) + (n-1) = n(n-1)/2

 (n-1)

 n

Insertion Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O(n2)

Insertion Sort run time is O(n2)

130

Insertion Sort

131

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

132

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

133

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

134

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

135

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

136

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

137

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

138

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

139

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

140

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

141

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted Insertion sort will do only n
comparisons and no swaps => good choice for small n and
data likely somewhat sorted

142

template <class Comparable>
void insertionSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 // unsorted = first index of the unsorted region,
 // Initially, sorted region is the_array[0],
 // unsorted region is the_array[1 ... size-1].
 // In general, sorted region is the_array[0 ... unsorted-1],
 // unsorted region the_array[unsorted ... size-1]
 for (int unsorted = 1; unsorted < size; unsorted++)
 {
 // At this point, the_array[0 ... unsorted-1] is sorted.
 // Keep swapping item to be inserted currently at the_array[unsorted]
 // with items at lower indices as long as its value is >
 int current = unsorted; //the index of the item currently being inserted
 while ((current > 0) && (the_array[current - 1] > the_array[current]))
 {
 std::swap(the_array[current], the_array[current - 1]); // swap
 current--;
 } // end while
 } // end for
} // end insertionSort

143

template <class Comparable>
void insertionSort(const std::vector<Comparable>& the_array)
{
 int size = the_array.size();
 // unsorted = first index of the unsorted region,
 // Initially, sorted region is the_array[0],
 // unsorted region is the_array[1 ... size-1].
 // In general, sorted region is the_array[0 ... unsorted-1],
 // unsorted region the_array[unsorted ... size-1]
 for (int unsorted = 1; unsorted < size; unsorted++)
 {
 // At this point, the_array[0 ... unsorted-1] is sorted.
 // Keep swapping item to be inserted currently at the_array[unsorted]
 // with items at lower indices as long as its value is >
 int current = unsorted; //the index of the item currently being inserted
 while ((current > 0) && (the_array[current - 1] > the_array[current]))
 {
 std::swap(the_array[current], the_array[current - 1]); // swap
 current--;
 } // end while
 } // end for
} // end insertionSort

144

Pass
O(n)

O(n)

O(n2)

Raise your hand if you had
Insertion Sort

145

What we have so far

146

Worst Case Best Case

Selection Sort O(n2) O(n2)

Bubble Sort O(n2) O(n)

Insertion Sort O(n2) O(n)

Lecture Activity

Sort the array using Insertion Sort
Show the entire array after each comparison/swap
operation and at each step mark clearly the division
between the sorted and unsorted portions of the array

147

5 8 3 4 9

5 8 3 4 9

Pick first element in
unsorted region and put it in
right place in sorted region

2 7

2 7

Lecture Assignment on Gradescope
Login and submit NOW!!!

148

5 8 3 4 9

5 8 3 4 9

2 7

2 7

5 3 8 4 9

3 5 8 4 9

2 7

2 7

3 5 4 8 9 2 7

3 4 5 8 9 2 7

3 4 5 8 9 2 7

3 4 5 8 2 9 7

3 4 5 2 8 9 7

3 4 2 5 8 9 7

3 2 4 5 8 9 7

2 3 4 5 8 9 7

2 3 4 5 8 7 9

2 3 4 5 7 8 9

149

https://www.toptal.com/developers/sorting-algorithms

What we have so far

150

Worst Case Best Case

Selection Sort O(n2) O(n2)

Bubble Sort O(n2) O(n)

Insertion Sort O(n2) O(n)

Can we do better?

151

Can we do better?

152

Divide and Conquer!!!

Merge Sort

153

Understanding O(n2)

154

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

Understanding O(n2)

155

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

Understanding O(n2)

156

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

T(1/2n) T(1/2n)

Understanding O(n2)

157

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

T(1/2n) T(1/2n)

(n/2)2 = n2/4

Understanding O(n2)

158

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

(n/2)2 = n2/4

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Understanding O(n2)

159

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 2743 76 158 195 59911 2605 642 932

(n/2)2 = n2/4

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Key Insight: Merge is linear

160

2 1 34 57 68 910

Key Insight: Merge is linear

161

2 1 34 57 68 910

Key Insight: Merge is linear

162

2 34 57 68 910

1

Key Insight: Merge is linear

163

2 34 57 68 910

1

Key Insight: Merge is linear

164

34 57 68 910

21

Key Insight: Merge is linear

165

34 57 68 910

21

Key Insight: Merge is linear

166

4 57 68 910

21 3

Key Insight: Merge is linear

167

4 57 68 910

21 3

Key Insight: Merge is linear

168

57 68 910

21 3 4

Key Insight: Merge is linear

169

57 68 910

21 3 4

Key Insight: Merge is linear

170

7 68 910

21 3 4 5

Key Insight: Merge is linear

171

7 68 910

21 3 4 5

Key Insight: Merge is linear

172

7 8 910

21 3 4 5 6

Key Insight: Merge is linear

173

7 8 910

21 3 4 5 6

Key Insight: Merge is linear

174

8 910

21 3 4 5 76

Key Insight: Merge is linear

175

8 910

21 3 4 5 76

Key Insight: Merge is linear

176

910

21 3 4 5 76 8

Key Insight: Merge is linear

177

910

21 3 4 5 76 8

Key Insight: Merge is linear

178

10

21 3 4 5 76 8 9

Key Insight: Merge is linear

179

10

21 3 4 5 76 8 9

Key Insight: Merge is linear

180

21 3 4 5 76 8 9 10

Key Insight: Merge is linear

181

21 3 4 5 76 8 9 10

Each step makes one comparison and
reduces the number of elements to

be merged by 1.
If there are n total elements to be

merged, merging is O(n)

Divide and Conquer

182

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 27476 158 195 59911 26064 932

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Divide and Conquer

183

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 2743 76 158 195 59911 2605 642 932

Speed up insertion sort by a factor of two by splitting
in half, sorting separately and merging results!

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

108 52314 43 100 200 27476 158 195 59911 26064 932

T(n) ≈ 1/2 T(n) + n

Divide and Conquer

Splitting in two gives 2x improvement.

184

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

185

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

186

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

What if we never stop splitting?

187

Merge Sort

188

76108 158195523 59914 43 200 2743 1126 642 932

7610852314 43 200 2743 158195 599 1126 642 932

14 43 2003 76108523274 158195 599 2 1126 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

189

76108 158195523 59914 43 200 2743 1126 642 932

7610852314 43 200 2743 158195 599 1126 642 932

14 43 2003 76108523274 158195 599 2 1126 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

190

76108 158195523 59914 43 200 2743 1126 642 932

7610852314 43 200 2743 158195 599 1126 642 932

14 43 2003 76108523274 158195 599 2 1126 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

191

76108 158195523 59914 43 200 2743 1126 642 932

7610852314 43 200 2743 158195 599 1126 642 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

192

76108 158195523 59914 43 200 2743 1126 642 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

193

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort

194

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge Sort Analysis

195

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

O(n)

O(n)

O(n)

O(n)

Merge Sort Analysis

196

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge n how many times?

n

n/2

n/4

. . .

n/2k

Merge Sort Analysis

197

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

Merge n how may times? n/2k = 1 
 n = 2k  

 log2 n = k

n

n/2

n/4

. . .

n/2k

Merge Sort Analysis

198

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

n

n/2

n/4

. . .

n/2k

Merge n elements log2 n times

Merge Sort Analysis

199

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 1126 64 932

O(n log n)

O(n)

O(n)

O(n)

O(n)

Merge Sort

How would you code this?

200

Merge Sort

How would you code this?

Hint: Divide and Conquer!!!

201

Merge Sort

Vector mergeSort(array)
{
 if array size <= 1
 return array //base case
 split array into left_array and right_array
 mergeSort(left_array)
 mergeSort(right_array)

 array = merge(left_array, right_array)

return array
}

202

Now sorted: contains left and
right merged

Merge Sort Analysis

Execution time does NOT depend on initial arrangement of data

Worst Case: O(n log n) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Stable

Best we can do with comparison-based sorting that does not rely
on a data structure in the worst case => can’t beat O(n log n)

Space overhead: auxiliary array at each merge step

203

What we have so far

204

Worst Case Best Case

Selection Sort O(n2) O(n2)

Insertion Sort O(n2) O(n)

Bubble Sort O(n2) O(n)

Merge Sort O(n log n) O(n log n)

Quick Sort

205

Quick Sort

206

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

207

pivot

<= pivot

> pivot

Partition

Quick Sort

208

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

209

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

210

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

211

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

212

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

213

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

214

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

215

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

216

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

217

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

218

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

219

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

220

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

221

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

≤ pivot > pivot
quickSort() quickSort()

Partition

Quick Sort Analysis

Divide and Conquer

n comparisons for each partition

How many subproblems? => Depends on pivot selection

Ideally partition divides problem into two n/2
subproblems for logn recursive calls (Best case)

Possibly (though unlikely) each partition has 1 empty
subarray for n recursive calls (Worst case)

222

template <class Comparable>
void quickSort(const std::vector<Comparable>& the_array,
 int first, int last)
{
 if (last - first + 1 < MIN_SIZE)
 {
 insertionSort(the_array, first, last);
 }
 else
 {
 // Create the partition: S1 | Pivot | S2
 int pivot_index = partition(the_array, first, last);

 // Sort subarrays S1 and S2
 quickSort(the_array, first, pivot_index);
 quickSort(the_array, pivot_index + 1, last);
 } // end if
} // end quickSort

223

Optimization

Optimization

How to select pivot?

224

How to select pivot?

Ideally median
 Need to sort array to find median

Other ideas?

225

How to select pivot?

Ideally median
 Need to sort array to find median

Other ideas?
 Pick first

226

95

How to select pivot?

Ideally median
 Need to sort array to find median

Other ideas?
 Pick first, middle, last position and order them
 making middle the pivot

227

695 13

How to select pivot?

Ideally median
 Need to sort array to find median

Other ideas?
 Pick first, middle, last position and order them
 making middle the pivot

228

136 95

pivot

Quick Sort Analysis
Execution time DOES depend on initial arrangement of data AND on
PIVOT SELECTION (luck?) => on random data can be faster than Merge
Sort

Possible optimization (e.g. smart pivot selection, speed up base case,
iterative instead of recursive implementation) can improve actual runtime
-> fastest comparison-based sorting algorithm on average

Worst Case: O(n2) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Unstable

229

230

Worst Case Best Case

Selection Sort O(n2) O(n2)

Insertion Sort O(n2) O(n)

Bubble Sort O(n2) O(n)

Merge Sort O(n log n) O(n log n)

Quick Sort O(n2) O(n log n)

231

https://www.toptal.com/developers/sorting-algorithms

232

https://www.youtube.com/watch?v=kPRA0W1kECg

https://www.youtube.com/watch?v=kPRA0W1kECg

