
Recursion

1

Tiziana Ligorio
Hunter College of The City University of New York

Today’s Plan

Announcements

Recursion

2

Announcements

Mixing it up:

- Review Recursion

- Back to Merge and Quick Sort

- Back here for Recursive Backtracking

3

4

What do these images have in common

5

They contain a SMALLER copy of THEMSELVES

Print String Backwards

“Hello”

6

Print String Backwards

“Hello”

Procedure:

If there are characters to print
 Print the last character and reverse the rest

7

Recursive Call
Notice it’s the last thing it does

Print String Backwards

Hello
o

Hello

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell

Hell
Hello

Program Stack

Active functions

Hello
o
 Hell
 o l

Print String Backwards

10

Hell
Hello

10

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel

11

Hell
Hello

Hel

11

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

12

Hell
Hello

Hel

12

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He

13

Hell
Hello

Hel
He

13

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e

14

Hell
Hello

Hel
He

14

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H

15

Hell
Hello

Hel
He
H

15

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

16

Hell
Hello

Hel
He
H

16

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

17

BASE CASE

17

Hell
Hello

Hel
He
H

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Hel
He
H

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Hel
He

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Hel
He

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Hel

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Hel

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hell
Hello

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hello

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Hello

Program Stack

Active functions

Print String Backwards

Hello
o
 Hell
 o l

 Hel
 o l l

 He
 o l l e
 H
 o l l e H

Program Stack

If I hand you a printed dictionary (an actual book) and
ask you to find the word “Kalimba”, what do you do?

28

29

Look in ?

LOOK FOR WORD “Kalimba” IN DICTIONARY

- Open dictionary at random page

_ If “Kalimba” is on page FOUND!!!

- Else if “Kalimba” is lexicographically < first word on
page
 LOOK FOR WORD “Kalimba” IN LOWER HALF

- Else if “Kalimba” is lexicographically > last word on page
 LOOK FOR WORD “Kalimba” IN UPPER HALF

30

Recursive Call

Recursive Call

How is this different from recursive solution to print
backwards?

31

How is this different from recursive solution to print
backwards?

- Two recursive calls

- Execute either one or the other

- Cuts problem in 1/2

32

Different Flavors of Recursion

Reverse String: write first character, reverse the
remaining single smaller string

Dictionary: either inspect upper-half or lower-half

Solve a problem by breaking it up into one or
more smaller “similar” problems

33

Recursive Problem-Solving
if(problem is sufficiently simple){  
 

directly solve the problem  
i.e. do something and/or return the solution  

 
} else{  

 
split problem up into one or more smaller
problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution if necessary  

}
34

Recursive Problem-Solving
if(problem is sufficiently simple){  
 

directly solve the problem  
i.e. do something and/or return the solution  

 
} else{  

 
split problem up into one or more smaller
problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution if necessary  

}
35

BASE CASE

Why Recursion

An alternative to iteration

Not always practical (some compilers optimize tail-
recursive algorithms)

Elegant and intuitive solution for some problems

36

Factorial

 1 x 2 x 3 x … x n

For example:
0!=1,1!=1, 2!=2, 3!=6, 4!=24, 5!=120

37

n!= k
k=1

n

∏

The empty product

But what if we start from n?

n!=

38

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

39

What is this?

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

40

(n-1)!

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

(n-1)! = (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

41

(n-1)!

What is this?

But what if we start from n?

n! = n x (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

(n-1)! = (n-1) x (n-2) x (n - 3) x … …. …. … 2 x 1

42

(n-1)!

(n-2)!

Recursion that Returns a Value

n! = n x (n-1)!

43

Same function being called within solution

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.  
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)! 
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

44

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.  
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)! 
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

45

BASE CASE

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.  
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)! 
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

46

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.  
 @pre: n must be greater than or equal to 0.  
 @post: None.  
 @return: The factorial of n; n is unchanged. */  
int factorial(int n)  
{  
 if (n == 0)  
 return 1;  
 else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)! 
 return n * factorial(n - 1); // n * (n-1)! is n!  
} // end fact

47

BASE CASE

WILL LEAD TO
BASE CASE

48

Reverse String:
 - single recursive call
 - Base case: stop => no return value

Dictionary:
 - split problem into halves but solve only 1
 - Base case: stop => no return value

Factorial:
 - single recursive call
 - Base case: return a value for computation in each recursive
call

Types of Recursion

49

Why/When use recursion

Usually less efficient than iterative counterparts (we will see
example later in the course)

Inherent overhead associated with function calls

Repeated recursive calls with same parameters

Compilers can optimize tail-recursive (recursive call is the last
statement in the function) functions to be iterative

Sometimes logic of iterative solution can be very complex in
comparison to recursive solution

50

Recursive Backtracking

51

The Eight Queens Problem

52

Place 8 Queens on the
board s.t. no queen is on
the same row, column or

diagonal

The Eight Queens Problem

53

The Eight Queens Problem

54

The Eight Queens Problem

55

The Eight Queens Problem

56

The Eight Queens Problem

57

The Eight Queens Problem

58

Backtracking!

The Eight Queens Problem

59

Backtracking!

The Eight Queens Problem

60

The Eight Queens Problem

How can we express this problem recursively?

61

The Eight Queens Problem

How can we express this problem recursively?

62

Place queen on column i
Recursively solve on

columns (i+1) to 8

The Eight Queens Problem

How do we backtrack?

63

The Eight Queens Problem

How do we backtrack?

64

Communicate to calling
function that there are no
options left, it should try

something else!

The Eight Queens Problem

bool placeQueens(board, column)
{
 if(column > BOARD_SIZE)
 return true; //Problem is solved!
 else
 {
 while(there are safe squares in this column)
 {
 place queen in next safe square;
 if(placeQueens(board, column+1)) //recursively look forward
 return true; //queen safely placed
 }
 return false; //recursive backtracking 

 } 
}

65

The Eight Queens Problem

bool placeQueens(board, column)
{
 if(column > BOARD_SIZE)
 return true; //Problem is solved!
 else
 {
 while(there are safe squares in this column)
 {
 place queen in next safe square;
 if(placeQueens(board, column+1)) //recursively look forward
 return true; //queen safely placed
 }
 return false; //recursive backtracking 

 } 
}

66

Path Finding
Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

67

Origin = P , Destination = Z

67

68

P
Origin = P , Destination = Z

68

Path Finding
Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

69

P
Origin = P , Destination = Z

R

69

Path Finding
Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

70

P
Origin = P , Destination = Z

R

X

70

Path Finding
Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

71

P
Origin = P , Destination = Z

R

X

71

Path Finding
Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

72

P
Origin = P , Destination = Z

R

X

72

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

73

P
Origin = P , Destination = Z

R

X

W

73

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

74

P
Origin = P , Destination = Z

R

X

W

S

74

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

75

P
Origin = P , Destination = Z

R

X

W

S

T

75

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

76

P
Origin = P , Destination = Z

R

X

W

S

T

76

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

77

P
Origin = P , Destination = Z

R

X

W

S

T

77

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

78

P
Origin = P , Destination = Z

R

X

W

S

T

Y

78

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

79

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

79

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Path Finding

80

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

80

Don’t get bogged down
by what a map is.

 In design phase you
know it’s available and
you can look up where
you can go next from

Path Finding
bool findPath(map, origin, destination)  
{  

mark origin as visited in map  
if origin == destination  

return true  
else  

for each unvisited city C reachable from origin  
if findPath(map, C, destination)  

return true  
return false //recursive backtracking  

}

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

81

Recursive call

Recursion and Induction

Principle of Mathematical Induction:

Suppose you want to prove that a statement P(n) about an
integer n is true for every positive integer n.

To prove that P(n) is true for all n ≥ 1, do the following two
steps:
- Base Step: Prove that P(1) is true.
- Inductive Step: Let k ≥ 1. Assume P(k) is true, and prove that
P(k + 1) is also true.

82

Recursion and Induction

//a: nonzero real number, n: nonnegative integer  
power(a, n)  
{  
if (n = 0)  
return 1  

else  
return a * power(a, n − 1)  

}

Prove by mathematical induction on n that the algorithm above is
correct. We will show P(n) is true for all n ≥ 0, where
P(n): For all nonzero real numbers a, power(a, n) correctly computes an.

83

Recursion and Induction
Base step: If n = 0, the first step of the algorithm tells us that
power(a,0)=1. This is correct because a0 = 1 for every nonzero
real number a, so P(0) is true.

Inductive step:
Let k ≥ 0.
Inductive hypothesis: power(a, k) = ak , for all a != 0.
We must show next that power(a, k+1)= ak+1 .
Since k + 1 > 0 the algorithm sets
power(a, k + 1) = a * power(a, k)  
By inductive hypotheses power(a, k) = ak
so power(a, k + 1) = a* power(a, k) = a * ak = ak+1

84

