Recursion

Tiziana Ligorio
Hunter College of The City University of New York

Today's Plan

Announcements
Recursion

Announcements

Mixing it up:

- Review Recursion
- Back to Merge and Quick Sort
- Back here for Recursive Backtracking

They contain a SMALLER copy of THEMSELVES

Print String Backwards

"Hello"

Print String Backwards

"Hello"

Procedure:

If there are characters to print
Print the last character and reverse the rest

Recursive Call
Notice it's the last thing it does

Print String Backwards

Hello

Active functions

Program Stack

Print String Backwards

Hello
 $\rightarrow \mathrm{Hell}$

Program Stack

Print String Backwards

Program Stack

Print String Backwards

If I hand you a printed dictionary (an actual book) and ask you to find the word "Kalimba", what do you do?

LOOK FOR WORD "Kalimba" IN DICTIONARY

- Open dictionary at random page
_ If "Kalimba" is on page FOUND!!!
- Else if "Kalimba" is lexicographically < first word on page

LOOK FOR WORD "Kalimba" IN LOWER HALF
Recursive Call

- Else if "Kalimba" is lexicographically > last word on page LOOK FOR WORD "Kalimba" IN UPPER HALF

Recursive Call

How is this different from recursive solution to print backwards?

How is this different from recursive solution to print backwards?

- Two recursive calls
- Execute either one or the other
- Cuts problem in 1/2

Different Flavors of Recursion

Reverse String: write first character, reverse the remaining single smaller string

Dictionary: either inspect upper-half or lower-half
Solve a problem by breaking it up into one or more smaller "similar" problems

Recursive Problem-Solving

if(problem is sufficiently simple) \{
directly solve the problem
i.e. do something and/or return the solution
\} else\{
split problem up into one or more smaller problems with the same structure as the original
solve some or all of those smaller problems
do something or combine results to return solution if necessary

Recursive Problem-Solving

if(problem is sufficiently simple) \{
base case
directly solve the problem
i.e. do something and/or return the solution
\} else\{
split problem up into one or more smaller problems with the same structure as the original
solve some or all of those smaller problems
do something or combine results to return solution if necessary

Why Recursion

An alternative to iteration

Not always practical (some compilers optimize tailrecursive algorithms)

Elegant and intuitive solution for some problems

Factorial

$1 \times 2 \times 3 \times \ldots \times n$

$$
n!=\prod_{k=1}^{n} k
$$

For example:
$0!=1,1!=1,2!=2,3!=6,4!=24,5!=120$
The empty product

But what if we start from n?

$$
n!=
$$

But what if we start from n ?

$$
n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \quad \ldots \quad \ldots . \quad \ldots 2 \times 1
$$

But what if we start from n ?

$$
n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \quad \ldots . \quad \ldots . \quad \ldots 2 \times 1
$$

But what if we start from n ?

$$
\begin{aligned}
& n!=n \times \frac{(n-1) \times(n-2) \times(n-3) \times \ldots}{(n-1)!} \\
& (n-1)!=(n-1) \times \frac{\ldots}{(n-2) \times(n-3) \times \ldots} \quad \ldots \\
& \text { What is this? }
\end{aligned}
$$

But what if we start from n ?

$$
\begin{aligned}
& n!=n \times \frac{(n-1) \times(n-2) \times(n-3) \times \ldots}{}(n-1)! \\
& (n-1)!=(n-1) \times(n-2) \times(n-3) \times \ldots \\
& (n-2)!
\end{aligned}
$$

Recursion that Returns a Value

Same function being called within solution

Recursion that Returns a Value

$\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)$!

/** Computes the factorial of the nonnegative integer n . @pre: n must be greater than or equal to 0 . @post: None.
@return: The factorial of n; n is unchanged. */
int factorial(int n)
\{
if ($\mathrm{n}==0$) return 1;
else // $\mathrm{n}>0$, so $\mathrm{n}-1>=0$. Thus, fact($\mathrm{n}-1$) returns ($\mathrm{n}-1$)! return n * factorial(n - 1); // n * (n-1)! is n !
\} // end fact

Recursion that Returns a Value

$$
n!=n \times(n-1)!
$$

/** Computes the factorial of the nonnegative integer n . @pre: n must be greater than or equal to 0 . @post: None.
@return: The factorial of n; n is unchanged. */
int factorial(int n)
\{
if ($\mathrm{n}==0$)

BASE CASE

 return 1;else // $\mathrm{n}>0$, so $\mathrm{n}-1$ >= 0. Thus, fact($\mathrm{n}-1$) returns ($\mathrm{n}-1$)! return n * factorial(n - 1); // n * (n-1)! is n !
\} // end fact

Recursion that Returns a Value

$\mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1)$!

/** Computes the factorial of the nonnegative integer n . @pre: n must be greater than or equal to 0 . @post: None.
@return: The factorial of n; n is unchanged. */
int factorial(int n)
\{
if ($\mathrm{n}==0$)
return 1;
else // $\mathrm{n}>0$, so $\mathrm{n}-1$ >= 0. Thus, fact($\mathrm{n}-1$) returns ($\mathrm{n}-1$)! return n * factorial(n - 1); // n * ($\mathrm{n}-1$)! is n !
\} // end fact

Recursion that Returns a Value

$$
n!=n \times(n-1)!
$$

/** Computes the factorial of the nonnegative integer n . @pre: n must be greater than or equal to 0 .
Cpost: None.
@return: The factorial of n; n is unchanged. */
int factorial(int n)
\{
if ($\mathrm{n}==0$)

BASE CASE

 return 1;else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
return n * factorial(n - 1); // n * ($\mathrm{n}-1$)! is n !
\} // end fact

cout << fact(3);
 ${ }^{6} \downarrow$

return 3*fact(2)
3*
return 2*fact(1) 2*1
return 1

Types of Recursion

Reverse String:

- single recursive call
- Base case: stop => no return value

Dictionary:

- split problem into halves but solve only 1
- Base case: stop => no return value

Factorial:

- single recursive call
- Base case: return a value for computation in each recursive call

Why/When use recursion

Usually less efficient than iterative counterparts (we will see example later in the course)

Inherent overhead associated with function calls

Repeated recursive calls with same parameters
Compilers can optimize tail-recursive (recursive call is the last statement in the function) functions to be iterative

Sometimes logic of iterative solution can be very complex in comparison to recursive solution

Recursive Backtracking

The Eight Queens Problem

Place 8 Queens on the board s.t. no queen is on the same row, column or diaqonal

The Eight Queens Problem

The Eight Queens Problem

The Eight Queens Problem

(c) The third queen in column 3

The Eight Queens Problem

The Eight Queens Problem

(e) The five queens can attack all of column 6

The Eight Queens Problem

Backtracking!

The Eight Queens Problem

Backtracking!

The Eight Queens Problem

The Eight Queens Problem

How can we express this problem recursively?

The Eight Queens Problem

How can we express this problem recursively?

(a) The first queen in column 1

Place queen on column i
Recursively solve on columns (i+1) to 8

The Eight Queens Problem

How do we backtrack?

The Eight Queens Problem

How do we backtrack?

Communicate to calling function that there are no options left, it should try something else!

The Eight Queens Problem

```
bool placeQueens(board, column)
{
    if(column > BOARD_SIZE)
        return true; //Problem is solved!
    else
    {
    while(there are safe squares in this column)
    {
            place queen in next safe square;
            if(placeQueens(board, column+1)) //recursively look forward
                return true; //queen safely placed
    }
    return false; //recursive backtracking
    }
}
```

	2	3		5	6	7
1		0		O		-
-	-	-	I		\bigcirc	
-	1	-		-	-	-
	-		-		-	
-	-	1		-	O	-
-	-	-	-	-	-	-
-	-	-		-	-	-

The Eight Queens Problem

```
bool placeQueens(board, column)
{
    if(column > BOARD_SIZE)
        return true; //Problem is solved!
    else
    {
    while(there are safe squares in this column)
    {
            place queen in next safe square;
            if(placeQueens(board, column+1)) //recursively look forward
                return true; //queen safely placed
    }
    return false; //recursive backtracking
    }
}
```

	2	3	4	5	6	78
1		0		0		
-	-	-	I		-	
	1	-			-	-
	-	-	-		-	
-	-	1		-	-	-
-	-		-	-	-	\bigcirc
-	-	-		\bigcirc	0	-

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination. Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination.
Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Origin = P , Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to des Assume cities are visited in alphabetical order. bool findPath(map, origin, destination)

Don't get bogged down by what a map is. In design phase you know it's available and you can look up where you can go next from

Origin = P , Destination = Z

Path Finding

```
    bool findPath(map, origin, destination)
    {
        mark origin as visited in map
        if origin == destination
        return true
    else
        for each unvisited city C reachable from origin
            if findPath(map, C, destination) \longleftarrow- Recursive call
                        return true
        return false //recursive backtracking
```

Or'rigin $^{\mathbf{3}} \mathrm{P}$, Destination $=\mathbf{Z}$

Recursion and Induction

Principle of Mathematical Induction:

Suppose you want to prove that a statement $\mathrm{P}(\mathrm{n})$ about an integer n is true for every positive integer n .

To prove that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq 1$, do the following two steps:

- Base Step: Prove that $\mathbf{P}(1)$ is true.
- Inductive Step: Let $k \geq 1$. Assume $\mathbf{P (k)}$ is true, and prove that $\mathrm{P}(\mathbf{k}+1)$ is also true.

Recursion and Induction

```
//a: nonzero real number, n: nonnegative integer
power(a, n)
{
    if (n = 0)
        return 1
    else
        return a * power(a, n - 1)
}
```

Prove by mathematical induction on n that the algorithm above is correct. We will show $P(n)$ is true for all $n \geq 0$, where $P(n)$: For all nonzero real numbers a, power (a, n) correctly computes a^{n}.

Recursion and Induction

Base step: If $\mathrm{n}=0$, the first step of the algorithm tells us that power $(a, 0)=1$. This is correct because $a^{0}=1$ for every nonzero real number a, so $P(0)$ is true.

Inductive step:
Let $\mathrm{k} \geq 0$.
Inductive hypothesis: power $(a, k)=a^{k}$, for all a != 0 .
We must show next that power ($a, k+1$) $=a^{k+1}$.
Since $k+1>0$ the algorithm sets
power (a, k + 1) = a * power (a, k)
By inductive hypotheses power (a, k) = a^{k}
so power $(a, k+1)=a^{*} \operatorname{power}(a, k)=a^{*} a^{k}=a^{k+1}$

