
Stack & Queue ADTs

1

Tiziana Ligorio
Hunter College of The City University of New York

Today’s Plan

ADT Recap

Stack ADT

Stack Applications

Queue ADT

Queue Applications

2

ADT Recap

Abstract Data Types:

Bag (unordered)

List (ordered)

ADT operations

add/insert, remove, find

3

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

4

34

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

5

34

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

6

127

34

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

7

34

127

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

8

13

34

127

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

9

34

127

13

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

10

13

34

127

Stack

An ADT representing a stack of items

Objects can be pushed onto the stack or
popped from the stack

LIFO: Last In First Out

Only top of stack is accessible (top), no other
objects on the stack are visible

11

34

127

Applications

Very simple structure

Many applications:
 program stack
 balancing parenthesis
 evaluating postfix expressions
 backtracking
 . . . and more

12

Program Stack

13

Program Stack

1 void f(int x, int y)  
2 {  
3 int a;  
4 // stuff here  
5 if(a<13) 
6 a = g(a); 
7 // stuff here  
8 }

9 int g(int z)  
10 {  
11 int p ,q;  
12 // stuff here  
13 return q;  
14 }

14

Program Stack

1 void f(int x, int y)  
2 {  
3 int a;  
4 // stuff here  
5 if(a<13) 
6 a = g(a); 
7 // stuff here  
8 }

9 int g(int z)  
10 {  
11 int p ,q;  
12 // stuff here  
13 return q;  
14 }

Stack Frame
for f()

parameters

return address

local variablesa

x
y

15

Address of instruction
after call to f()

. . .

Program Stack

1 void f(int x, int y)  
2 {  
3 int a;  
4 // stuff here  
5 if(a<13) 
6 a = g(a); 
7 // stuff here  
8 }

9 int g(int z)  
10 {  
11 int p ,q;  
12 // stuff here  
13 return q;  
14 }

16

Stack Frame
for f()

Stack Frame
for g()

parameters

parameters

return address

return address

local variables

local variablesa

p
q
x
y

z

Address of instruction
after call to f()

Address of
instruction on line 7

. . .

. . .

Program Stack

1 void f(int x, int y)  
2 {  
3 int a;  
4 // stuff here  
5 if(a<13) 
6 a = g(a); 
7 // stuff here  
8 }

9 int g(int z)  
10 {  
11 int p ,q;  
12 // stuff here  
13 return q;  
14 }

17

Stack Frame
for f()

parameters

return address

local variablesa

x
y

Address of instruction
after call to f()

. . .

Balancing Parentheses

18

Given a string, determine if parenthesis are balanced.
Parentheses can be { }, [] or (), and must be nested properly.

E.g. “ [({ })] “ is balanced, while “ [({ }] “ or “ [({) }] “ are not.

Typical applications: parsers and compilers.

How would you solve it?

Balancing Parentheses

19

int f(){if(x*(y+z[i])<47){x += y}}

Balancing Parentheses

20

int f(){if(x*(y+z[i])<47){x += y}}

Balancing Parentheses

21

int f(){if(x*(y+z[i])<47){x += y}}

Balancing Parentheses

22

int f(){if(x*(y+z[i])<47){x += y}}

Balancing Parentheses

23

int f(){if(x*(y+z[i])<47){x += y}}

Balancing Parentheses

24

int f(){if(x*(y+z[i])<47){x += y}}

push

(

Balancing Parentheses

25

int f(){if(x*(y+z[i])<47){x += y}}

pop

Balancing Parentheses

26

int f(){if(x*(y+z[i])<47){x += y}}

push

{

Balancing Parentheses

27

int f(){if(x*(y+z[i])<47){x += y}}

{

Balancing Parentheses

28

int f(){if(x*(y+z[i])<47){x += y}}

{

{

Balancing Parentheses

29

int f(){if(x*(y+z[i])<47){x += y}}

(

push

Balancing Parentheses

30

int f(){if(x*(y+z[i])<47){x += y}}

{

(

Balancing Parentheses

31

int f(){if(x*(y+z[i])<47){x += y}}

{

(

{

(

Balancing Parentheses

32

int f(){if(x*(y+z[i])<47){x += y}}

(

push

Balancing Parentheses

33

int f(){if(x*(y+z[i])<47){x += y}}

{

(

(

Balancing Parentheses

34

int f(){if(x*(y+z[i])<47){x += y}}

{

(

(

Balancing Parentheses

35

int f(){if(x*(y+z[i])<47){x += y}}

{

(

(

{

(

(

Balancing Parentheses

36

int f(){if(x*(y+z[i])<47){x += y}}

[

push

Balancing Parentheses

37

int f(){if(x*(y+z[i])<47){x += y}}

{

(

(

[

Balancing Parentheses

38

int f(){if(x*(y+z[i])<47){x += y}}

pop

{

(

(

Balancing Parentheses

39

int f(){if(x*(y+z[i])<47){x += y}}

pop

{

(

Balancing Parentheses

40

int f(){if(x*(y+z[i])<47){x += y}}

{

(

Balancing Parentheses

41

int f(){if(x*(y+z[i])<47){x += y}}

{

(

Balancing Parentheses

42

int f(){if(x*(y+z[i])<47){x += y}}

{

(

Balancing Parentheses

43

int f(){if(x*(y+z[i])<47){x += y}}

pop

{

Balancing Parentheses

44

int f(){if(x*(y+z[i])<47){x += y}}

push

{

{

Balancing Parentheses

45

int f(){if(x*(y+z[i])<47){x += y}}

{

{

{

Balancing Parentheses

46

int f(){if(x*(y+z[i])<47){x += y}}

{

Balancing Parentheses

47

int f(){if(x*(y+z[i])<47){x += y}}

{

{

Balancing Parentheses

48

int f(){if(x*(y+z[i])<47){x += y}}

{

{

Balancing Parentheses

49

int f(){if(x*(y+z[i])<47){x += y}}

{

{

Balancing Parentheses

50

int f(){if(x*(y+z[i])<47){x += y}}

{

{

Balancing Parentheses

51

int f(){if(x*(y+z[i])<47){x += y}}

pop

{

Balancing Parentheses

52

int f(){if(x*(y+z[i])<47){x += y}}

Finished reading
Stack is empty

Parentheses are balanced

pop

Balancing Parentheses

53

int f(){if(x*(y+z[i])<47){x += y}

Finished reading
Stack not empty

Parentheses NOT balanced

{

Balancing Parentheses

54

for(char ch : st)  
{

if ch is an open parenthesis character  
push it on the stack

else if ch is a close parenthesis character  
if it matches the top of the stack  
pop the stack  
else  

return unbalanced  
// else it is not a parenthesis

}

if stack is empty  
return balanced

else
return unbalanced  

O(n)

Evaluating
Postfix Expressions

55

Postfix Expressions

Operator applies to the two operands immediately
preceding it

56

Infix:
2 * (3 + 4)

2 * 3 + 4

Postfix:
2 3 4 + *

2 3 * 4 +

Evaluating Postfix Expressions

Operator applies to the two operands immediately
preceding it

Assumptions / simplifications:
 - String is syntactically correct postfix expression
 - No unary operators
 - No exponentiation operation
 - Operands in string are single integer values

57

Postfix:
2 3 4 + *

Evaluating Postfix Expressions

58

Postfix:
2 3 4 + *

2

Evaluating Postfix Expressions

59

Postfix:
2 3 4 + *

2

3

Evaluating Postfix Expressions

60

Postfix:
2 3 4 + *

2

3
4

Evaluating Postfix Expressions

61

Postfix:
2 3 4 + *

2

3
4

Evaluating Postfix Expressions

62

Postfix:
2 3 4 + * 4 +

2

3

Evaluating Postfix Expressions

63

Postfix:
2 3 4 + * 34 +

2

Evaluating Postfix Expressions

64

Postfix:
2 3 4 + * 34 + = 7

2

2

Evaluating Postfix Expressions

65

Postfix:
2 3 4 + *

7

Evaluating Postfix Expressions

66

Postfix:
2 3 4 + *

2
7

Evaluating Postfix Expressions

67

Postfix:
2 3 4 + * 7

2

Evaluating Postfix Expressions

68

Postfix:
2 3 4 + * 27 *

Evaluating Postfix Expressions

69

Postfix:
2 3 4 + * 27 * = 14

Evaluating Postfix Expressions

70

Postfix:
2 3 4 + *

14

Done reading string
The top of the stack

is the result

Evaluating Postfix Expressions

Operator applies to the two operands immediately
preceding it

Assumptions / simplifications:
 - string is syntactically correct postfix expression
 - No unary operators
 - No exponentiation operation
 - Operands in string are single integer values

71

Postfix:
2 3 * 4 +

Evaluating Postfix Expressions

72

Postfix:
2 3 * 4 +

2

Evaluating Postfix Expressions

73

Postfix:
2 3 * 4 +

2

3

Evaluating Postfix Expressions

74

Postfix:
2 3 * 4 + 3 *

2

Evaluating Postfix Expressions

75

3
Postfix:
2 3 * 4 + 2* = 6

Evaluating Postfix Expressions

76

Postfix:
2 3 * 4 +

6

4

Evaluating Postfix Expressions

77

Postfix:
2 3 * 4 +

6

Evaluating Postfix Expressions

78

Postfix:
2 3 * 4 + 4 +

6

Evaluating Postfix Expressions

79

Postfix:
2 3 * 4 + 64 10+ =

Evaluating Postfix Expressions

80

Postfix:
2 3 * 4 +

10

Done reading string
The top of the stack

is the result

Evaluating Postfix Expressions

for(char ch : st)  
{

if ch is an operand  
push it on the stack

else // ch is an operator op  
{  

//evaluate and push the result
operand2 = pop stack  
operand1 = pop stack  
result = operand1 op operand2  
push result on stack

}  
}

81

O(n)

Search a Flight Map

Fly from Origin to Destination following map

1. Reach destination

2. Reach city with no departing flights (dead end)

3. Go in circles forever

82

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

83

P
Origin = P , Destination = Z

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

84

P
Origin = P , Destination = Z

R

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

85

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

86

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

87

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

88

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

89

P
Origin = P , Destination = Z

R

X

W

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

90

P
Origin = P , Destination = Z

R

X

W

S

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

91

P
Origin = P , Destination = Z

R

X

W

S

T

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

92

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

93

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

94

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

95

Origin = P , Destination = Z

R

X

W

S

T

Y

P

C = visited
C = backtracked

Backtracking

Avoid dead end by backtracking

Avoid traveling in circles by marking visited cities

96

Origin = P , Destination = Z

R

X

W

S

T

Y

Z

P

C = visited
C = backtracked

Backtracking

97

Origin = P , Destination = Z

P

P

Backtracking

98

Origin = P , Destination = Z

R

P

Backtracking

99

Origin = P , Destination = Z

R

X

P

Backtracking

100

Origin = P , Destination = Z

R

Backtracking

101

Origin = P , Destination = Z

P

P
W

Backtracking

102

Origin = P , Destination = Z

P
W

Backtracking

103

Origin = P , Destination = Z

S

P
W

Backtracking

104

Origin = P , Destination = Z

S
T

Backtracking

105

Origin = P , Destination = Z

P
W
S

Backtracking

106

Origin = P , Destination = Z

P
W

P
W

Backtracking

107

Origin = P , Destination = Z

Y

P
W

Y

Backtracking

108

Origin = P , Destination = Z Z

Backtracking

while(not found flights from origin to destination)  
{

if no flight exists from city on top of stack to
unvisited destination  

pop the stack //BACKTRACK
else  
{  

select an unvisited city C accessible from city
currently at top of stack  
push C on stack  
mark C as visited

}
}

109

Program Stack and Recursion

Recursion works because function waining for result/
return from recursive call are on program stack

Order of execution determined by stack

110

More Applications

Balancing anything!
 - html tags (e.g <p> matches </p>)
 - parsers in general

Reverse characters in a word or words in a sentence

Undo mechanism for editors or backups

Traversals (graphs / trees)

. . .

111

Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
void push(const T& new_entry); // adds an element to top of stack  
void pop(); // removes element from top of stack  
T top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  

 bool isEmpty() const; // returns true if no elements on stack false otherwise 
 
private:  
 //implementation details here

}; //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`

112

Abstract Data Types

Bag

List

Stack

Queue

113

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

114

34

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

115

34

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

116

34 127

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

117

34 127

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

118

34 127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

119

34 127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

120

34 127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

121

127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

122

49127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

123

49127 13

Queue

An ADT representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

FIFO: First In First Out

Only front of queue is accessible (front), no other
objects in the queue are visible

124

Queue Applications

Generating all substrings

Any waiting queue
 - Print jobs
 - OS scheduling processes with equal priority
 - Messages between asynchronous processes
 . . .

125

Queue Applications

Generating all substrings

Any waiting queue
 - Print jobs
 - OS scheduling processes with equal priority
 - Messages between asynchronous processes
 . . .

126

Generating all substrings

Generate all possible strings up to some fixed length n
with repetition (same character included multiple
times)

How might we do it with a queue?

Example simplified to n = 2 and only letters A and B

127

128

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

129

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

130

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

131

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”}

132

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“ “B“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”}

133

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“

“AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

134

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“ “AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

135

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

136

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

137

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“ “AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

138

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

139

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}

140

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}

141

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”}

142

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BA“

“BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”}

143

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }

144

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }

Breadth-First Search

Applications
 Find shortest path in graph
 GPS navigation systems
 Crawlers in search engines
 . . .

Generally good when looking for the “shortest” or
“best” way to do something => lists things in
increasing order of “size” stopping at the “shortest”
solution

145

146

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

Size of Substring

Finding all substrings (with repetition) of size up to n

Assume alphabet (A, B, … , Z) of size 26

The empty string= 1= 260

All strings of size 1 = 261

All strings of size 2 = 262

. . .

All strings of size n = 26n

Analysis

147

With repetition: I have 26
options for each of the

 n characters

A B C . . . Z

AA BA CA . . . ZA

AB BC
. . .

AZ

. . .

. . .

ZB

ZZ

CB

BZ CZ

””

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

148

Analyze the worst-case time
complexity of this algorithm
assuming alphabet of size 26
and up to strings of length n

 T(n) = ?
O(?)

Size of Substring

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

149

Will stop when all strings have
been removed from queue

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

150

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

151

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

Loop until queue is empty and dequeue only 1 each time.
So the question becomes:
How many strings are enqueued in total?

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

152

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

153

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

154

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

O(26n)

155

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Let n = 3, alphabet still {‘A’,’B’}

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“ “ 20

156

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“A“ “B“

Let n = 3, alphabet still {‘A’,’B’}

21

157

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AA“ “AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

22

158

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB““AA“

159

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB““AB“

160

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“

161

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“

162

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}

“BB“

163

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}

23

Memory Usage

With alphabet {’A’, ’B’, …, ’Z’}, at some point we end
up with 26n strings in memory

Size of string on my machine = 24 bytes

Running this algorithm for n = 7 (≈ 193GB) is the
maximum that can be handled by a standard personal
computer

For n = 8 ≈ 5TB

164

Massive space requirement

What if we use a stack?

165

O(26n)

findAllSubstrings(int n)
{
 push empty string on the stack

 while(stack is not empty){
 let current_string = pop and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and push it
 }
 }
 return result;
}

166

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

167

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “
{ “” }

168

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“
{ “” }

169

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“

{ “” }

170

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“
{ “” }

171

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“ “BA“ “BB“
{ “”,“B”}

172

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“

{ “”,“B”}

173

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“
{ “”,“B”,”BB”}

174

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“
{ “”,“B”,”BB”,”BA”}

175

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“
{ “”,“B”,”BB”,”BA”,”A”}

176

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“ “AA“ “AB“
{ “”,“B”,”BB”,”BA”,”A”}

177

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“

{ “”,“B”,”BB”,”BA”,”A”}

178

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“
{ “”,“B”,”BB”,”BA”,”A”,”AB”}

179

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“
{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}

180

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

What’s the difference?

{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}

Depth-First Search

Applications
 Detecting cycles in graphs
 Path finding
 Finding strongly connected components in graph
 . . .

Same worst-case runtime analysis
More space efficient than previous approach
Does not explore options in increasing order of size

181

Comparison
Breadth-First Search
(using a queue)

Time O(26n)

Space O(26n)

Good for exploring options in
increasing order of size when
expecting to find “shallow” or
“short” solution

Memory inefficient when must
keep each “level” in memory

182

Depth-First Search
(using a stack)

Time O(26n)

Space O(n)

Explores each option
individually to max size - does
NOT list options by increasing
size

More memory efficient

#ifndef QUEUE_H_  
#define QUEUE_H_  
 
template<class T>  
class Queue  
{  
 
public:  

Queue();  
void enqueue(const T& new_entry); // adds an element to back queue  
void dequeue(); // removes element from front of queue  
T front() const; // returns a copy of element at the front of queue 
int size() const; // returns the number of elements in the queue  

 bool isEmpty() const; // returns true if no elements in queue, false otherwise 
 
private:  
 //implementation details here

}; //end Queue  
 
#include "Queue.cpp"  
#endif // QUEUE_H_ `

Queue ADT

183

Other ADTs

184

Deque

Double ended queue (deque)

Can add and remove to/from front and back

185

34

Deque

Double ended queue (deque)

Can add and remove to/from front and back

186

34

Deque

Double ended queue (deque)

Can add and remove to/from front and back

187

34
127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

188

34 127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

189

34 127
49

Deque

Double ended queue (deque)

Can add and remove to/from front and back

190

34 12749

Deque

Double ended queue (deque)

Can add and remove to/from front and back

191

34 127
49

Deque

Double ended queue (deque)

Can add and remove to/from front and back

192

34 127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

193

34 127

Deque

In STL :
- does not use contiguous memory
- more complex to implement (keep track of memory
blocks)
- grows more efficiently than vector

194

Deque

In STL :
- does not use contiguous memory
- more complex to implement (keep track of memory
blocks)
- grows more efficiently than vector

In STL stack and queue are adapters of deque

195

Deque

In STL :
- does not use contiguous memory
- more complex to implement (keep track of memory blocks)
- grows more efficiently than vector

In STL stack and queue are adapters of deque

STL standardized the use of language “push” and “pop”,
adapting with “push_back”, “push_front” etc. for all
containers

196

Priority Queue

A queue of items “sorted” by priority

197

A

Low Priority

High Priority

Priority Queue

A queue of items “sorted” by priority

198

A

Low Priority

High Priority

Priority Queue

A queue of items “sorted” by priority

199

A

Low Priority

High Priority

D

Priority Queue

A queue of items “sorted” by priority

200

A

Low Priority

High Priority

D

Priority Queue

A queue of items “sorted” by priority

201

A

Low Priority

High Priority

D

X

Priority Queue

A queue of items “sorted” by priority

202

X

Low Priority

High Priority

A D

Priority Queue

A queue of items “sorted” by priority

203

X

Low Priority

High Priority

A D

Priority Queue

A queue of items “sorted” by priority

204

Low Priority

High Priority

A D

If value indicates priority, it
amounts to a sorted list that

accesses/removes
the “highest” items first

Priority Queue

Orders elements by priority => removing an element
will return the element with highest priority value

Elements with same priority kept in queue order (in
some implementations)

205

Priority Queue

Spoiler Alert!!!!

Often implemented with a Heap

Will tell you what it is in a few weeks… but here is
another example of ADT vs data structure

206

Explore the STL

207

It’s time to get to know it!!!

C++ Interlude 8 in your textbook
https://en.cppreference.com/w/cpp/standard_library

https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/algorithm

You should use STL stack and queue for Project 6

Explore as you learn about new ADTs and algorithms.

208

Main Components

Containers

Algorithms

Functions

Iterators

209

Main Components

Containers

Algorithms

Functions

Iterators

210

Sequence Containers

array

vector

deque

forward_list (singly linked)

list (doubly linked)

211

Fixed size

Grow and Shrink

Also allows access to
any location with []

Contiguous memory

Non-contiguous memory
Growing and shrinking

more efficient

Container Adaptors

Impose a different interface for the underlying
container

stack

queue

priority_queue

212

For Project 6
 #include <stack>

 #include <queue>

std::queue<Attack> attack_queue_;
std::stack<Creature*> alien_stack_;
std::stack<Creature*> undead_stack_;
std::stack<Creature*> mystical_stack_;

 std::stack<Creature*> unknown_stack_;

 attack_queue_.push(attack);
//uses stack language but always adds
// to the back of the queue

 attack_queue_.pop();
 //uses stack language but always removes from the  
 //front of the queue, does NOT return  
 // the popped item

213

Algorithms
#include <algorithm>

Search and Compare Algorithms examples
for_each() // applies a function to a range in container  
count() // counts the occurrences of an item within a range  
max_element() // returns the max value within a range

Sequence Modification Algorithms examples
copy() //copies items within a range starting at given position

within same or different container  
fill() // sets all entries within a range to give value

Sorting and Searching Algorithms examples
 sort() // sorts entries within a range in ascending order —

typically some variation of QuickSort  
stable_sort() // “” — typically MergeSort may vary  
binary_search() // determines if an item exist in a given range

in a sorted container
. . . much more!!!

214

