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ADT Recap

Abstract Data Types: 

Bag (unordered) 

List (ordered) 

ADT operations 

add/insert, remove, find 
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Stack

An ADT representing a stack of items 

Objects can be pushed onto the stack or 
popped from the stack 
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Stack

An ADT representing a stack of items 

Objects can be pushed onto the stack or 
popped from the stack 

LIFO: Last In First Out 

Only top of stack is accessible (top), no other 
objects on the stack are visible
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Applications

Very simple structure 

Many applications: 
 program stack 
 balancing parenthesis 
 evaluating postfix expressions 
 backtracking 
 . . . and more
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Program Stack
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Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 
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Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 

Stack Frame 
for f()

parameters

return address

local variablesa

x 
y
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Address of instruction  
after call to f()

. . .



Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 
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Stack Frame 
for f()

Stack Frame 
for g()

parameters

parameters

return address

return address

local variables

local variablesa

p 
q
x 
y

z

Address of instruction  
after call to f()

Address of  
instruction on line 7

. . .

. . .



Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  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Stack Frame 
for f()

parameters

return address

local variablesa

x 
y

Address of instruction  
after call to f()

. . .



Balancing Parentheses
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Given a string,  determine if parenthesis are balanced. 
Parentheses can be { }, [ ] or ( ), and must be nested properly. 

E.g. “ [ ( { } ) ] “ is balanced, while “ [ ( { }  ] “ or “ [ ( {  ) } ] “ are not. 

Typical applications: parsers and compilers.

How would you solve it?



Balancing Parentheses
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int f(){if(x*(y+z[i])<47){x += y}} 
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int f(){if(x*(y+z[i])<47){x += y}} 

push

(
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int f(){if(x*(y+z[i])<47){x += y}} 
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[

push
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int f(){if(x*(y+z[i])<47){x += y}} 

pop

{

(

(
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int f(){if(x*(y+z[i])<47){x += y}} 
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Balancing Parentheses
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int f(){if(x*(y+z[i])<47){x += y}} 

Finished reading 
Stack is empty 

Parentheses are balanced

pop



Balancing Parentheses
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int f(){if(x*(y+z[i])<47){x += y} 

Finished reading 
Stack not empty 

Parentheses NOT balanced

{



Balancing Parentheses
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for(char ch : st)  
{

if ch is an open parenthesis character  
push it on the stack

else if ch is a close parenthesis character  
if it matches the top of the stack  
pop the stack  
else  

return unbalanced  
// else it is not a parenthesis 

}

if stack is empty  
return balanced

else
return unbalanced  

O(n)



Evaluating  
Postfix Expressions

55



Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

56

Infix: 
2 * (3 + 4) 

2 * 3 + 4

Postfix: 
2 3 4 + * 

2 3 * 4 +



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications: 
 - String is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values

57

Postfix: 
2 3 4 + *



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

2



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

2

3



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

2

3
4



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

2

3
4



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 4 +

2

3



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 34 +

2



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 34 + = 7

2



2

Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

7
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Postfix: 
2 3 4 + *
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Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 7

2



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 27 *



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 27 * = 14



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + *

14

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications: 
 - string is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values

71

Postfix: 
2 3 * 4 + 



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

2



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

2

3



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 3 *

2



Evaluating Postfix Expressions
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3
Postfix: 
2 3 * 4 + 2* = 6



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

6



4

Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

6



Evaluating Postfix Expressions

78

Postfix: 
2 3 * 4 + 4 +

6



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 64 10+ =



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

10

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

for(char ch : st)  
{

if ch is an operand  
push it on the stack

else // ch is an operator op  
{  

//evaluate and push the result
operand2 = pop stack  
operand1 = pop stack  
result = operand1 op operand2  
push result on stack

}  
}

81

O(n)



Search a Flight Map

Fly from Origin to Destination following map 

1. Reach destination 

2. Reach city with no departing flights (dead end) 

3. Go in circles forever 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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P
Origin = P , Destination = Z

C = visited
C = backtracked
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Avoid dead end by backtracking 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Origin = P , Destination = Z
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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P
Origin = P , Destination = Z

R

X

W

S

T

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Origin = P , Destination = Z

R

X

W

S

T

P
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C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Origin = P , Destination = Z

R

X

W

S

T

Y

P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

96

Origin = P , Destination = Z

R

X

W

S

T

Y

Z

P

C = visited
C = backtracked



Backtracking
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Origin = P , Destination = Z

P



P

Backtracking

98

Origin = P , Destination = Z

R



P

Backtracking
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Origin = P , Destination = Z

R

X



P

Backtracking
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Origin = P , Destination = Z

R



Backtracking
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Origin = P , Destination = Z

P



P
W

Backtracking
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Origin = P , Destination = Z



P
W

Backtracking
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Origin = P , Destination = Z

S



P
W

Backtracking
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Origin = P , Destination = Z

S
T



Backtracking
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Origin = P , Destination = Z

P
W
S



Backtracking
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Origin = P , Destination = Z

P
W



P
W

Backtracking
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Origin = P , Destination = Z

Y



P
W

Y

Backtracking

108

Origin = P , Destination = Z Z



Backtracking

while(not found flights from origin to destination)  
{

if no flight exists from city on top of stack to 
unvisited destination  

pop the stack //BACKTRACK
else  
{  

select an unvisited city C accessible from city 
currently at top of stack  
push C on stack  
mark C as visited

}
}
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Program Stack and Recursion

Recursion works because function waining for result/
return from recursive call are on program stack 

Order of execution determined by stack 
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More Applications

Balancing anything! 
 - html tags (e.g <p> matches </p> ) 
   - parsers in general 

Reverse characters in a word or words in a sentence 

Undo mechanism for editors or backups 

Traversals (graphs / trees) 

. . . 
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Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
void push(const T& new_entry); // adds an element to top of stack  
void pop(); // removes element from top of stack  
T top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  

    bool isEmpty() const; // returns true if no elements on stack false otherwise 
 
private:  
          //implementation details here

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`

112



Abstract Data Types

Bag 

List 

Stack 

Queue
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Queue

An ADT representing a waiting line 

Objects can be enqueued to the back of the line 

 or dequeued from the front of the line 
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Queue

An ADT representing a waiting line 

Objects can be enqueued to the back of the line 

 or dequeued from the front of the line 

FIFO: First In First Out 

Only front of queue is accessible (front), no other 
objects in the queue are visible

124



Queue Applications

Generating all substrings 

Any waiting queue 
 - Print jobs 
 - OS scheduling processes with equal priority 
 - Messages between asynchronous processes 
 . . .
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Queue Applications

Generating all substrings 

Any waiting queue 
 - Print jobs 
 - OS scheduling processes with equal priority 
 - Messages between asynchronous processes 
 . . .
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Generating all substrings

Generate all possible strings up to some fixed length n 
with repetition (same character included multiple 
times) 

How might we do it with a queue?  

Example simplified to n = 2 and only letters A and B

127
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}



129

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”}
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“A” “B”

“AA” “AB” “BA” “BB”

“A“ “B“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”}
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“A“

“B“

“AA“ “AB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“ “AA“ “AB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

“BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“ “AB“ “BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BA“

“BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BB“

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of 
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }



Breadth-First Search

Applications 
 Find shortest path in graph 
 GPS navigation systems 
 Crawlers in search engines 
 . . . 

Generally good when looking for the “shortest” or 
“best” way to do something => lists things in 
increasing order of “size” stopping at the “shortest” 
solution

145
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findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}

Size of Substring



Finding all substrings (with repetition) of size up to n 

Assume alphabet (A, B, … , Z) of size 26 

The empty string= 1= 260 

All strings of size 1 = 261 

All strings of size 2 = 262 

  

. . . 

All strings of size n = 26n

Analysis

147

With repetition: I have 26 
options for each of the 

 n characters

A B C . . . Z

AA BA CA . . . ZA

AB BC
. . .

AZ

. . .

. . .

ZB

ZZ

CB

BZ CZ

””



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}

148

Analyze the worst-case time 
complexity of this algorithm 
assuming alphabet of size 26 
and up to strings of length n 

 T(n) = ? 
O(?)

Size of Substring



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}

149

Will stop when all strings have 
been removed from queue



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}

150

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have 
been removed from queue



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}

151

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have 
been removed from queue

Loop until queue is empty and dequeue only 1 each time. 
So the question becomes:  
How many strings are enqueued in total?



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}
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Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have 
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n  



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}
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Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have 
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n  



findAllSubstrings(int n)
{
    put empty string on the queue
    
    while(queue is not empty){
        let current_string = dequeue and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and enqueue it
        }
    } 
  return result;
}
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Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have 
been removed from queue

O( 26n) 
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Let n = 3, alphabet still {‘A’,’B’}

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“ “ 20
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“A“ “B“

Let n = 3, alphabet still {‘A’,’B’}

21
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AA“ “AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB““AA“
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB““AB“
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}

“BB“
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}
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Memory Usage

With alphabet {’A’, ’B’, …, ’Z’}, at some point we end 
up with 26n strings in memory 

Size of string on my machine = 24 bytes 

Running this algorithm for n = 7 (≈ 193GB) is the 
maximum that can be handled by a standard personal 
computer 

For n = 8 ≈ 5TB 

164

Massive space requirement



What if we use a stack?
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O( 26n) 

findAllSubstrings(int n)
{
    push empty string on the stack
    
    while(stack is not empty){
        let current_string = pop and add to result
        if(size of current_string < n){
            for(each character ch)//every character in alphabet
                append ch to current_string and push it
        }
    } 
  return result;
}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “
{ “” }
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“
{ “” }
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“

{ “” }
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“
{ “” }
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“ “BA“ “BB“
{ “”,“B”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“

{ “”,“B”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“
{ “”,“B”,”BB”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“
{ “”,“B”,”BB”,”BA”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“
{ “”,“B”,”BB”,”BA”,”A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“ “AA“ “AB“
{ “”,“B”,”BB”,”BA”,”A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“

{ “”,“B”,”BB”,”BA”,”A”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“
{ “”,“B”,”BB”,”BA”,”A”,”AB”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“
{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}
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“ ”

“A” “B”

“AA” “AB” “BA” “BB”

What’s the difference?

{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}



Depth-First Search

Applications 
 Detecting cycles in graphs 
 Path finding 
 Finding strongly connected components in graph 
 . . . 

Same worst-case runtime analysis 
More space efficient than previous approach 
Does not explore options in increasing order of size
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Comparison
Breadth-First Search 
(using a queue) 

Time O( 26n) 

Space O( 26n)  

Good for exploring options in 
increasing order of size when 
expecting to find “shallow” or 
“short” solution 

Memory inefficient when must 
keep each “level” in memory

182

Depth-First Search 
(using a stack) 

Time O( 26n) 

Space O( n) 

Explores each option 
individually to max size - does 
NOT list options by increasing 
size 

More memory efficient



#ifndef QUEUE_H_  
#define QUEUE_H_  
 
template<class T>  
class Queue  
{  
 
public:  

Queue();  
void enqueue(const T& new_entry); // adds an element to back queue  
void dequeue(); // removes element from front of queue  
T front() const; // returns a copy of element at the front of queue 
int size() const; // returns the number of elements in the queue  

    bool isEmpty() const; // returns true if no elements in queue, false otherwise 
 
private:  
          //implementation details here

};    //end Queue  
 
#include "Queue.cpp"  
#endif // QUEUE_H_ `

Queue ADT
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Other ADTs
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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34



Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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34 127
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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34 12749



Deque

Double ended queue (deque) 

Can add and remove to/from front and back 

191

34 127
49



Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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Deque

Double ended queue (deque) 

Can add and remove to/from front and back 
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Deque

In STL : 
- does not use contiguous memory 
- more complex to implement (keep track of memory 
blocks) 
- grows more efficiently than vector 
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Deque

In STL : 
- does not use contiguous memory 
- more complex to implement (keep track of memory 
blocks) 
- grows more efficiently than vector 

In STL stack and queue are adapters of deque 
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Deque

In STL : 
- does not use contiguous memory 
- more complex to implement (keep track of memory blocks) 
- grows more efficiently than vector 

In STL stack and queue are adapters of deque 

STL standardized the use of language “push” and “pop”, 
adapting with “push_back”, “push_front” etc. for all 
containers 
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Priority Queue

A queue of items “sorted” by priority 
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A

Low Priority

High Priority



Priority Queue

A queue of items “sorted” by priority 
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A

Low Priority

High Priority



Priority Queue

A queue of items “sorted” by priority 
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A

Low Priority

High Priority

D



Priority Queue

A queue of items “sorted” by priority 
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A

Low Priority

High Priority

D



Priority Queue

A queue of items “sorted” by priority 
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A

Low Priority

High Priority

D
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Priority Queue

A queue of items “sorted” by priority 
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X

Low Priority

High Priority

A D



Priority Queue

A queue of items “sorted” by priority 
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X

Low Priority

High Priority

A D



Priority Queue

A queue of items “sorted” by priority 
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Low Priority

High Priority

A D

If value indicates priority, it 
amounts to a sorted list that 

accesses/removes  
the “highest” items first



Priority Queue

Orders elements by priority => removing an element 
will return the element with highest priority value 

Elements with same priority kept in queue order (in 
some implementations)

205



Priority Queue

Spoiler Alert!!!! 

Often implemented with a Heap 

Will tell you what it is in a few weeks… but here is 
another example of ADT vs data structure
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Explore the STL
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It’s time to get to know it!!! 

C++ Interlude 8 in your textbook 
https://en.cppreference.com/w/cpp/standard_library

https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/algorithm

You should use STL stack and queue for Project 6 

Explore as you learn about new ADTs and algorithms.
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Main Components

Containers 

Algorithms 

Functions 

Iterators
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Main Components

Containers 

Algorithms 

Functions 

Iterators
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Sequence Containers

array

vector

deque

forward_list (singly linked) 

list (doubly linked) 

211

Fixed size

Grow and Shrink

Also allows access to 
any location with [ ]

Contiguous memory

Non-contiguous memory 
Growing and shrinking 

more efficient



Container Adaptors

Impose a different interface for the underlying 
container 

stack

queue

priority_queue
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For Project 6
   #include <stack>

 #include <queue>

std::queue<Attack> attack_queue_;
std::stack<Creature*> alien_stack_;
std::stack<Creature*> undead_stack_;
std::stack<Creature*> mystical_stack_;

 std::stack<Creature*> unknown_stack_; 
  

    attack_queue_.push(attack); 
//uses stack language but always adds 
// to the back of the queue

    
    attack_queue_.pop();   
   //uses stack language but always removes from the  
   //front of the queue, does NOT return  
   // the popped item  
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Algorithms
#include <algorithm>

Search and Compare Algorithms examples 
for_each() // applies a function to a range in container  
count() // counts the occurrences of an item within a range  
max_element() // returns the max value within a range 

Sequence Modification Algorithms examples 
copy() //copies items within a range starting at given position 

within same or different container  
fill() // sets all entries within a range to give value 

Sorting and Searching Algorithms examples 
 sort() // sorts entries within a range in ascending order — 

typically some variation of QuickSort  
stable_sort() // “” — typically MergeSort may vary  
binary_search() // determines if an item exist in a given range 

in a sorted container 
. . . much more!!!
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