
Stack Implementations

1

Tiziana Ligorio 
Hunter College of The City University of New York



Today’s Plan

Announcements 

Recap 

Stack Implementations: 
 Array 
 Vector 
 Linked Chain

2



Announcements

Last MTC workshop today! 

Don’t forget to read C++ Interlude 8 in your textbook 

Familiarize yourself with the STL 

Use std::stack and std::queue in Project 6

3



Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
void push(const T& new_entry); // adds an element to top of stack  
void pop(); // removes element from top of stack  
T top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  

    bool isEmpty() const; // returns true if no elements on stack false otherwise 
 
private:  
          //implementation details here

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`

4



ADT vs Data Structure
ADT is the logical/abstract description of the organization and 
operations on the data 

Data Structure is the representation/implementation of the ADT 

We may have multiple implementations of the same ADT 
- 1 ADT 
- Multiple Data Structures  

To complicate matters, a data structure may be implemented using 
other data structures 
- stack implemented using queue 
- priority queue implemented using heap (more on this later)

5



Choose a Data Structure

Array? 

Vector? 

Linked chain?

6



Choose a Data Structure

Inserting and removing from same end (LIFO) 

Goal: minimize work - Ideally  O(1) 

What would you suggest?

7



Array

8

0 1 2 3 4 5

Where is the top 
of the stack?

items_



Array

9

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

item_count_ = 0

max_items_ = 6

items_



Array

10

O

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

items_

push(‘O’)

item_count_ = 1

max_items_ = 6



Array

11

O Z

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

items_

push(‘Z’)

item_count_ = 2

max_items_ = 6



Array

12

O Z B

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

items_

push(‘B’)

item_count_ = 3

max_items_ = 6



Array

13

O Z

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

items_

pop()

item_count_ = 2

max_items_ = 6

Pops 
items_[item_count_ -1]



Array Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT!!!!

14



Array Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT???

15



Array

16

O Z B Y L P

0 1 2 3 4 5

Top of the stack: 
items_[item_count_]

items_

push(’T’)

item_count_ = 6

max_items_ = 6

Sorry Stack is Full!!!



Vector

std::vector<T> some_vector;

So what is a vector really? 

17



Vector

std::vector<T> some_vector;

So what is a vector really? 

18

2
buffer_ =
len_ =
capacity_ = 5

Vector (simplified)

O Z

0 1 2 3 4

Push and pop same as 
with arrays



Vector

std::vector<T> some_vector;

So what is a vector really? 

19

buffer_ =
len_ = 5
capacity_ = 5

Vector (simplified)

O Z B Y L

0 1 2 3 4

Stack is Full?



Vector

std::vector<T> some_vector;

So what is a vector really? 

20

buffer_ =
len_ = 5
capacity_ = ?

Vector (simplified)

O Z B Y L

0 1 2 3 4

No, I’ll Grow!!!

O Z B Y L

0 1 2 3 4 5 6 . . . 



Lecture Activity

How much should it grow? 

Write an explanation arguing the pros and cons of 
growing by the amount you propose 

21



Vector Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT!!!!

22



Vector Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT???

23

Except when stack is full must: 
 - allocate new array 
 - copy elements in new array 
 - delete old array



Vector Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT???

24

Except when stack is full must: 
 - allocate new array O(1) 
 - copy elements in new array O(n) 
 - delete old array O(1)



How should Vector grow?

Sometimes O(1)  

Sometimes O(n)  

Consider behavior over several pushes

25



Vector Growth: a naive approach

std::vector<T> some_vector;

So what is a vector really? 

26

buffer_ =
len_ = 5
capacity_ = 6

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!! 
I will add space for the 

item to be added

O Z B Y L

0 1 2 3 4 5



Vector Growth: a naive approach

If vector grows by 1 each time, every push costs n “steps” 

Cost of pushes: 
 1 + 2 + 3 + 4 + 5 + . . . + n  
= n (n+1)/2  

27



Vector Growth: a naive approach

If vector grows by 1 each time, every push costs n “steps” 

Cost of n pushes: 
 1 + 2 + 3 + 4 + 5 + . . . + n  
= n (n+1)/2  
= n2 /2 + n / 2 O(n2)

28



Vector Growth: a better approach

std::vector<T> some_vector;

So what is a vector really? 

29

buffer_ =
len_ = 5
capacity_ = 7

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!! 
I will add two more slots!

O Z B Y L

0 1 2 3 4 5 6



Vector Growth: a better approach

If vector grows by 2 each time,  

Let a “hard push” be one where the whole vector needs 
to be copied 

When vector is not copied we have an “easy push” 

Now half our pushes will be easy (1 step) and half will be 
hard (n steps) 

So if reconsider the work over several pushes?

30



Analysis visualization adapted from Keith Schwarz

31



Vector Growth: a better approach

32

1 1

2

3 1

2

3

4

5 1

2

3

4

5

6

7 1

2

3

4

5

6

7

8

Easy push Easy push Easy push
Hard push Hard push Hard push Hard pushEasy push



Vector Growth: a better approach

33

Work Saved

Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

By simply adding one extra “slot” we 
roughly cut down the work by half on 

average (over several pushes)

Easy push



Vector Growth: a better approach

34Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different 
way: what happens if I 

spread the work over time?

Easy push



Vector Growth: a better approach

35Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different 
way: what happens if I 

spread the work over time?

Easy push



Vector Growth: a better approach

36Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different 
way: what happens if I 

spread the work over time?

Easy push



Vector Growth: a better approach

37Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Easy push

Now compare with the 
“naive”  approach



Vector Growth: a better approach

38Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Easy push

Now compare with the 
“naive”  approach

By simply adding one extra “slot” 
we roughly cut down the work by 

half (over several pushes)



Can we do better?

39



Vector Growth: a much better approach

std::vector<T> some_vector;

So what is a vector really? 

40

buffer_ =
len_ = 5
capacity_ = 10

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!! 
I’ll double my size!

O Z B Y L

0 1 2 3 4 5 6 7 8 9



Vector Growth: a much better approach

41



Vector Growth: a much better approach

42

Let’s spread the work over time



Vector Growth: a much better approach

43

Let’s spread the work over time



Vector Growth: a much better approach

44

Let’s spread the work over time



Vector Growth: a much better approach

45

Let’s spread the work over time



Vector Growth: a much better approach

46

Let’s spread the work over time



Vector Growth: a much better approach

47

Let’s spread the work over time

Over time I can spread my work so that I have  
(OVER SEVERAL PUSHES) constant work



Vector Growth: a much better approach

48

Let’s spread the work over time

Amortized 
Analysis

Over time I can spread my work so that I have  
(OVER SEVERAL PUSHES) constant work



Vector Growth summarized

If it grows by 1, O(n2) over time (n pushes - 
AMORTIZED ANALYSIS) 

If it grows by 2, push takes roughly half the“steps” 
but still O(n2) over time ( n pushes - AMORTIZED 
ANALYSIS) 

If it doubles its size, push takes O(1) over time (n 
pushes - AMORTIZED ANALYSIS)

49



A steadily shrinking Stack

If a large vector suddenly goes almost empty it will 
still occupy the same space. 

50

Useless memory waste

I will not shrink!



Linked Chain

51

top_



Linked Chain

52

top_ new_node_ptr

push



Linked Chain

53

top_ new_node_ptr

push



Linked Chain

54

top_ new_node_ptr

push



Linked Chain

55

top_



Linked Chain

56

top_

push

new_node_ptr



Linked Chain

57

top_

push

new_node_ptr



Linked Chain

58

top_

push

new_node_ptr



Linked Chain

59

top_

push

new_node_ptr



Linked Chain

60

top_



Linked Chain

61

top_



Linked Chain

62

pop
temp_ptrtop_



Linked Chain

63

pop
temp_ptr

top_



Linked Chain

64

pop
temp_ptr

top_



Linked Chain

65

pop
temp_ptr

top_



Linked Chain

66

top_



Linked-Chain Analysis

1 assignment + 1 increment/decrement =  O(1) 

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1) 

GREAT!!!! And there is no “Except” case here, every 
operation is O(1)!

67



To summarize

Array: O(1) for push and pop, but size is bounded 

Vector: size is unbounded but 
 -Some push operations take O(1), others take   
 O(n) -> O(1) over time (AMORTIZED ANALYSIS) 
 
Linked-Chain: O(1) for push and pop and size is 
unbounded

68



Implement Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
void push(const T& newEntry); // adds an element to top of stack  
void pop(); // removes element from top of stack  
T top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  

    bool isEmpty() const; // returns true if no elements on stack false otherwise 
 
private:  
    

// implementation-specific members here

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_

69

What should we add 
here to implement it as 

a linked chain?



Implement Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
~Stack(); // destructor  
Stack(const Stack<T>& a_stack); //copy constructor  
void push(const T& newEntry); // adds an element to top of stack  
void pop(); // removes element from top of stack 
T top() const; // returns a copy of element at top of stack 
int size() const; // returns the number of elements in the stack  

    bool isEmpty() const; // returns true if no elements on stack false otherwise 
 
private:  
    Node<T>* top_; // Pointer to top of stack  
   int item_count;        // number of items currently on the stack 

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_

70


