Trees

Tiziana Ligorio
Hunter College of The City University of New York

Today's Plan

Trees

Binary Tree ADT

Announcements

ADT Operations we have seen so far

Bag, List, Stack, Queue
Add data to collection
Remove data from collection
Retrieve data from collection

Stack and Queue always position based
Bag, retrieval always value based (there are no positions)
List has both.
For all of them, data organization is linear

Tree

Non-linear structure

A special type of graph
Can represent relationships
Hierarchical (directional) organization
(E.g. family tree)

Subtree: the subtree rooted at node n is the tree formed by taking n as the root node and including all its descendants.

Path: a sequence of nodes $c_{1}, c_{2}, \ldots, c_{k}$ where c_{i+1} is a child of c_{i}.

Height: the number of nodes in the longest path from the root to a leaf.

Different shapes/structures

Both n = 16
Both 11 leaves
Different height

We have already seen Trees!

Mostly as a "thinking tool"

- Decision Trees

- Divide and Conquer

Merge Sort

Binary Tree ADT

BinaryTree

BinaryTree

Different shapes/structures

Both h = 3 and one leaf But different

Binary Tree Applications

Algebraic Expressions

$$
(3+4) * 5
$$

$$
3+4 * 5
$$

Decision Tree

Huffman Tree

Huffman Encoding Compression Algorithm (Huffman Encoding):
"In 1951, David A. Huffman for his MIT Information Theory class term paper hit upon the idea of using a frequency-sorted binary tree and quickly proved this method the most efficient."

IDEA: Encode symbols into a sequence of bits s.t. most frequent symbols have shortest encoding

Not encryption but compression => use shortest code for most frequent symbols

No codeword is prefix to another codeword (i.e. if a symbol is encoded as 00 no other codeword can start with 00)

Huffman Tree

50\%
 20\%
 20\% 5\%
 3\%
 2\%

Huffman Tree

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes
Label each tree with its height and number of leaves.

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes
Label each tree with its height and number of leaves.
How many did you draw?
What's the maximum/minimum height?
What's the maximum/minimum number of leaves?

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes
Label each tree with its height and number of leaves.
How many did you draw? 14
What's the maximum/minimum height? $\max =4, \min =3$
What's the maximum/minimum number of leaves?

$$
\max =2, \min =1
$$

Tree Structure

$h=7$
$h=7$

Structure definitions may vary across different sources.

The following comes from your textbook and will be used in this course and on exams

Tree Structure

$h=3$
$h=5$

What is the maximum (minimum) height of a tree with 7 nodes?
$h=7$
$h=7$

Tree Structure

h = $\mathbf{3}$

WE WILL LOOK AT THE
GENERAL ANSWER NEXT
h = 5
$h=7$
$h=7$

Full Binary Tree

Every node that is not a leaf has exactly 2 children
 Every node has left and right subtrees of same height
 All leaves are at same level h

Complete Binary Tree

(Height) Balanced Binary Tree

For any node, its left and right subtrees differ in height by no more than 1

All paths from root of subtrees to leaf differ in length by at most 1

Unbalanced

Maximum Height

n nodes
every node 1 child
$h=n$
Essentially a chain

Minimum Height

Binary tree of height h can have up to $n=2^{h}-1$
For example for $h=3,1+2+4=7=2^{3}-1$
$h=\log _{2}(n+1)$ for a full binary tree
For example:
1,000 nodes $h \approx 10\left(1,000 \approx \mathbf{2}^{10}\right)$
$1,000,000$ nodes $h \approx 20\left(10^{6} \approx \mathbf{2}^{20}\right)$

Minimum Height

Binary tree of height h can have up to $n=2^{h}-1$
For example for $h=3,1+2+4=7=2^{3}-1$
$h=\log _{2}(n+1)$ for a fulll binary tree
For example:
1,000 nodes $h \approx 10\left(1,000 \approx \mathbf{2}^{10}\right)$
$1,000,000$ nodes $h \approx 20\left(10^{6} \approx \mathbf{2}^{20}\right)$

Important when we will be looking for things in trees given some order!!!

In a full tree:
h n @ level Total n

$$
1 \quad 1=20 \quad 1=21-1
$$

$2 \quad 2=2^{1} \quad 3=2^{2}-1$
$3 \quad 4=2^{2} \quad 7=2^{3-1}$
$4 \quad 8=2^{3} \quad 15=2^{4}-1$
h $\mathbf{2 h}^{\text {h-1 }}$
2h-1

Binary Tree Traversals

Visit (retrieve, print, modify ...) every node in the tree

Essentially visit the root as well as it's subtrees

Order matters!!!

Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Preorder: 60, 20, 10, 40, 30, 50, 70

Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse T
    traverse TR
}
```


Preorder: 60, 20, 10, 40, 30, 50, 70

Visit (retrieve, print, modify ...) every node in the tree Preorder Traversal:

```
if (T is not empty) //implicit base case
{
    visit the root r
    traverse TL
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Inorder Traversal:

```
if (T is not empty) //implicit base case
{
    traverse TL
    visit the root r
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Inorder Traversal:

```
if (T is not empty) //implicit base case
{
    traverse TL
    visit the root r
    traverse TR
}
```


Visit (retrieve, print, modify ...) every node in the tree Postorder Traversal:

```
if (T is not empty) //implicit base case
{
    traverse TL
    traverse T TR
    visit the root r
}
```


Visit (retrieve, print, modify ...) every node in the tree Postorder Traversal:

```
if (T is not empty) //implicit base case
{
    traverse TL
    traverse TR
    visit the root r
}
```


$?$

?

? BinaryTree ADT Operations

?

$?$
?
?
$?$

```
#ifndef BinaryTree_H_
#define BinaryTree_H_
template<class T>
class BinaryTree
{
public:
    BinaryTree(); // constructor
    BinaryTree(const BinaryTree<T>& tree); // copy constructor
    ~BinaryTree(); // destructor
    bool isEmpty() const;
    size_t getHeight() const;
    size_t getNumberOfNodes() const;
    void add(const T& new_item);
    void remove(const T& new_item);
    T find(const T& item) const;
    void clear();
    void preorderTraverse(Visitor<T>& visit) const;
    void inorderTraverse(Visitor<T>& visit) const;
    void postorderTraverse(Visitor<T>& visit) const;
    BinaryTree& operator= (const BinaryTree<T>& rhs);
private: // implementation details here
}; // end BST
#include "BinaryTree.cpp"
#endif // BinaryTree_H_
```

```
#ifndef BinaryTree_H_
#define BinaryTree_H_
template<class T>
class BinaryTree
{
public:
    BinaryTree(); // constructor
    BinaryTree(const BinaryTree<T>& tree); // copy constructor
    ~BinaryTree(); // destructor
    bool isEmpty() const;
    size_t getHeight() const;
    size_t getNumberOfNodes() const;
    void add(const T& new_item);
    void remove(const T& new_item);
    T find(const T& item) const;
    void clear();
    void preorderTraverse(Visitor<T>& visit) const;
    void inorderTraverse(Visitor<T>& visit) const;
    void postorderTraverse(Visitor<T>& visit) const;
    BinaryTree& operator= (const BinaryTre<<>& rhs);
private: // implementation details here
}; // end BST
#include "BinaryTree.cpp"
#endif // BinaryTree_H_
```

This is an abstract class from which we can derive desired behavior keeping the traversal general

