Algorithm Efficiency

Tiziana Ligorio
Hunter College of The City University of New York

Announcements

Online Assessment Workshops Postponed

- First Session will be on Tuesday 2/20
- Revised schedule on Blackboard

Confirming: you CAN index an array or vector with the increment/decrement operator in C++
std: :cout << a[++x] ;

Recap

We implemented a Bag ADT
Using an Array data structure
Next using a Linked data structure
But first...

Today's Plan

Algorithm Efficiency

Algorithm Efficiency

Scenario 1

You are using an application but it won't complete some operation...
whatever it is doing it's taking way too long...

Scenario 1

You are using an application but it won't complete some operation...
whatever it is doing it's taking way too long...
how "long" does that have to be for you to become ridiculously frustrated?

Scenario 1

You are using an application but it won't complete some operation...
whatever it is doing it's taking way too long...
how "long" does that have to be for you to become ridiculously frustrated?
... probably not that long

Scenario 2

At your next super job with the company/research-center of your dreams you are given a very difficult problem to solve

You work hard on it, find a solution, code it up and it works!!!!
Proudly you present it the next day

but...

Scenario 2

At your next super job with the company/research-center of your dreams you are given a very difficult problem to solve

You work hard on it, find a solution, code it up and it works!!!!
Proudly you present it the next day

but...
Given some new (large) input it's taking an awfully long time to complete execution...

Well... sorry but your solution is no good!!!

You need to have a means to estimate/predict the efficiency of your algorithms on unknown input.

What is a good solution?

How can we compare solutions to a problem? (Algorithms)

What is a good solution?

Correct

If it's not
correct it is not
a solution at all

What is a good solution?

Correct

What is a good solution?

Correct

We are going to focus on time

How can we measure time efficiency?

How can we measure time efficiency? Runtime?

Problems with actual runtime for comparison

What computer are you using?
Runtime is highly sensitive to hardware

Problems with actual

runtime for comparison

What computer are you using? Runtime is highly sensitive to hardware

What implementation are you using?
Implementation details may affect runtime but are not reflective of algorithm efficiency

How should we measure execution time?

How should we measure execution time?

Number of "steps" or "operations" as a function of the size of the input

How should we measure

execution time?

Number of "steps" or "operations" as a function of the size of the input

Variable

```
template<class T>
int ArrayBag<T>::getFrequency0f(const T& an_entry) const
{
    int frequency{0};
    int current_index{0}; // array index currently being inspected
    while (current_index < item_count_)
    {
        if (items_[current_index] == an_entry)
        {
            frequency++;
        } // end if
        current_index ++; // increment to next entry
    } // end while
    return frequency;
} // end getFrequencyOf
```


What are the operations?
 Let n be the number of items in the array

```
template<class T>
int ArrayBag<T>::getFrequency0f(const T& an_entry) const
{
    int frequency{0};
    int current_index{0}; // array index currently being inspected
    while (current_index < item_count_)
    {
        if (items_[current_index] == an_entry)
        {
            frequency++;
        } // end if
        current_index ++; // increment to next entry
    } // end while
    return frequency;
} // end getFrequencyOf
```


What are the operations?
 Let \mathbf{n} be the number of items in the array

What are the operations? Let n be the number of items in the array

What are the operations? Let n be the number of items in the array

C_{i} is some constant number
n is the number of items

What are the operations? Let \mathbf{n} be the number of items in the array

How should we measure

execution time?

Number of "steps" or "operations" as a function of the size of the input

Variable

Lecture Activity

Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is skipped
    while (!found && (search_index < item_count_))
    {
        if (items_[search_index] == target)
        {
            found = true;
            result = search_index;
            }
            else
            {
                search index ++;
            } // end if
    } // end while
    return result;
} // end getIndexOf
```


Lecture Activity

Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is skipped
    while (!found && (search_index < item_count_))
    {
        if (items_[search_index] == target)
        {
            found = true;
            result = search_index;
        }
        else
        {
                search_index ++;
        } // end if
    } // end while
    return result;
} // end getIndexOf
```

Was this tricky?

Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is skipped
    while (!found && (search_index < item_count_))
    {
        if (items_[search_index] == target)
            {
                found = true;
                result = search_index;
            }
            else
            {
                search_index ++;
            } // end if
    } // end while
    return result;
} // end getIndexOf
```


Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is skipped
    while (!found && (search_index < item_count_))
    {
        if (items_[search_index] == target)
            {
                found = true;
                result = search_index;
            }
            else
            {
                search_index ++;
            } // end if
                    Maybe stop at
                    end of loop
    } // end while
                                    the middle
```


Maybe stop at

 end of loop return result;
 \} // end getIndexOf

Identify the steps and write down an expression for execution time

```
template<class T>
```

int ArrayBag<T>::getIndexOf(const T\& target) const
\{
bool found = false;
int result = -1;
int search_index $=0$;
// If the bag is empty, item_count_ is zero, so loop is skipped
while (!found \&\& (search_index < item_count_))
\{
if (items_[search_index] == target)
\{
found = true;
result = search_index;
\}
else
\{
search_index ++;
\} // end if
\} // end while
return result;
\} // end getIndexOf

Execution completes in at most:

$\mathrm{C}_{0} \boldsymbol{n}+\mathrm{C}_{1}$ operations

Types of Analysis

Best case analysis: running time under best input (e.g., in linear search item we are looking for is the first) - not reflective of overall performance)

Average case analysis: assumes equal probability of input (usually not the case)

Expected case analysis: assumes probability of occurrence of input is known or can be estimated, and if it were possible may be too expensive

Worst case analysis: running time under worst input, gives upper bound, it can't get worse, good for sleeping well at night!

Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is skipped
    while (!found && (search_index < item_count_))
    {
        if (items[search_index] == target)
        {
            found = true;
            result = search_index;
            }
            else
            {
                search_index ++;
            } // end if
    } // end while
    return result;
} // end getIndexOf
```

Some constant number of operations repeated inside the loop

Some constant number of operations performed outside the loop

Identify the steps and write down an expression for execution time

```
template<class T>
int ArrayBag<T>::getIndexOf(const T& target) const
{
    bool found = false;
    int result = -1;
    int search_index = 0;
    // If the bag is empty, item_count_ is zero, so loop is ski` The number of times
    while (!found && (search_index < item_count_))
    {
        if (items[search_index] == target)
        {
                found = true;
            result = search_index;
        }
            else
        {
                search_index ++;
            } // end if
    } // end while
    return result;
} // end getIndexOf
```

Some constant number of operations repeated inside the loop

The number of times the loop is repeated, i.e. the size of Bag
\{

```
                    inside the loop
```

Some constant number of operations performed outside the loop

Observation

Don't need to explicitly compute the constants C_{i}

$$
\begin{aligned}
& 4 \mathbf{n}+1000 \\
& \mathbf{n}+137
\end{aligned}
$$

Dominant term is sufficient to explain overall behavior (in this case linear)

Big-O Notation

Ignores everything except dominant term
Examples:

$$
\begin{aligned}
& T(n)=4 n+4=O(n) \\
& T(n)=164 n+35=O(n) \\
& T(n)=n^{2}+35 n+5=O\left(n^{2}\right) \\
& T(n)=2 n^{3}+98 n^{2}+210=O\left(n^{3}\right) \\
& T(n)=2^{n}+5=O(2 n)
\end{aligned}
$$

Big-O Notation

$T(n)$ is the running time

n is the size of the input

Ign pres everything except dominant term

Examples:

Notation: describes the overall behavior

$$
\begin{aligned}
& T(n)=4 n+4=O(n) \\
& T(n)=164 n+35=O(n) \\
& T(n)=n^{2}+35 n+5=O\left(n^{2}\right) \\
& T(n)=2 n^{3}+98 n^{2}+210=O\left(n^{3}\right) \\
& T(n)=2^{n}+5=O\left(2^{n}\right)
\end{aligned}
$$

Big-O Notation

Ignores everything except dominant term

Examples:

Big-O describes the overall behavior

$$
\begin{aligned}
& T(n)=4 n+4=O(n) \\
& T(n)=164 n+35=O(n) \\
& T(n)=n^{2}+35 n+5=O\left(n^{2}\right) \\
& T(n)=2 n^{3}+98 n^{2}+210=O\left(n^{3}\right) \\
& T(n)=2 n+5=O(2 n)
\end{aligned}
$$

Big-O Notation

Ignores everything except dominant term

Examples:

$$
\begin{aligned}
& T(n)=4 n+4=O(n) \\
& T(n)=164 n+35=O(n) \\
& T(n)=n^{2}+35 n+5=O\left(n^{2}\right) \\
& T(n)=2 n^{3}+98 n^{2}+210=O\left(n^{3}\right) \\
& T(n)=2 n+5=O(2 n)
\end{aligned}
$$

Big-O describes the overall behavior

Let $T(n)$ be the running time of an algorithm measured as number of operations given input of size \mathbf{n}.

$$
T(n) \text { is } O(f(n))
$$

Big-O Notation

Ignores everything except dominant term
Examples:

Big-O describes the overall behavior

$$
\begin{aligned}
& T(n)=4 n+4=O(n) \\
& T(n)=164 n+35=O(n) \\
& T(n)=n^{2}+35 n+5=O\left(n^{2}\right) \\
& T(n)=2 n^{3}+98 n^{2}+210=O\left(n^{3}\right) \\
& T(n)=2^{n}+5=O(2 n)
\end{aligned}
$$

More formally:

$T(n)$ is $O(f(n))$
if there exist constants k and n_{\varnothing} such that for all $\mathrm{n} \geq \mathrm{n}_{0}$, $T(n) \leq k f(n)$

$T(n)=n^{2}-3 n+10$ $T(n)$ is $O\left(n^{2}\right)$
For $\mathrm{k}=3$ and $\mathrm{n} \geq 1.5$

More formally:

$T(n)$ is $O(f(n))$
if there exist constants k and n_{0} such that for all $\mathrm{n} \geq \mathrm{n}_{0}$, $T(n) \leq k f(n)$

$T(n)=n^{2}-3 n+10$
$T(n)$ is $O\left(n^{2}\right)$
For $\mathrm{k}=3$ and $\mathrm{n} \geq 1.5$

This is why we can look at dominant term only to explain behavior

Big-O describes the overall growth rate of an algorithms for large \mathbf{n}

Proving Big-O Relationship

Apply definition of Big-O to prove that $T(n)$ is $O(f(n))$ for particular functions T and f

Do so by choosing k and n_{0} s.t. for all $n \geq n_{0}$, $T(n) \leq k f(n)$

Proving Big-O Relationship

Example:

Suppose $T(n)=(n+1)^{2}$
We can say that $T(n)$ is $O\left(n^{2}\right)$
To prove it must find k and n_{0} s.t. for all $n \geq n_{0}$, $(\mathrm{n}+1)^{2} \leq \mathrm{kn}{ }^{2}$

Proving Big-O Relationship

Example:

Suppose $T(n)=(n+1)^{2}$
We can say that $T(n)$ is $O\left(n^{2}\right)$

To prove it must find k and n_{0} s.t. for all $n \geq n_{0}$, $(\mathrm{n}+1)^{2} \leq \mathrm{kn}{ }^{2}$
Expand $(n+1)^{2}=n^{2}+2 n+1$
Observe that, as long as $n \geq 1, n \leq n^{2}$ and $1 \leq n^{2}$

Proving Big-O Relationship

Example:

Suppose $T(n)=(n+1)^{2}$
We can say that $T(n)$ is $O\left(n^{2}\right)$
To prove it must find k and n_{0} s.t. for all $n \geq n_{0}$, $(\mathrm{n}+1)^{2} \leq \mathrm{kn}{ }^{2}$
Expand $(n+1)^{2}=n^{2}+2 n+1$
Observe that, as long as $n \geq 1, n \leq n^{2}$ and $1 \leq n^{2}$
Thus if we choose $n_{0}=1$ and $k=4$ we have
$n^{2}+2 n+1 \leq n^{2}+2 n^{2}+n^{2}=4 n^{2}$

Proving Big-O Relationship

Example:

Suppose T(n) =(n+1)2
We can say that $T(n)$ is $O\left(n^{2}\right)$

To prove it must find k and n_{0} s.t. for all $n \geq n_{0}$,
$(n+1)^{2} \leq k n^{2}$

Expand $(n+1)^{2}=n^{2}+2 n+1$
Observe that, as long as $n \geq 1, n \leq n^{2}$ and $1 \leq \mathrm{n}^{2}$
Thus if we choose $n_{0}=1$ and $k=4$ we have
$n^{2}+2 n+1 \leq n^{2}+2 n^{2}+n^{2}=4 n^{2}$

Proving Big-O Relationship

Not Unique:

Could also choose $n_{0}=3$ and
$k=2$ because
$(\mathrm{n}+1)^{2} \leq 2 \mathrm{n}^{2}$ for all $\mathrm{n} \geq 3$

For proof one is enough

Complexity classes

O(1): Constant worst-case running time
O(log n): Logarithmic worst-case running time
O(n): Linear worst-case running time
O(n logn): Log-Linear worst-case running time
$O\left(n^{2}\right)$: Quadratic worst-case running time
$O\left(n^{3}\right)$: Cubic worst-case running time
$O\left(n^{k}\right)$: Polynomial worst-case running time
$O\left(c^{n}\right):$ Exponential worst-case running time (too slow!)

Examples

O(1): Hello world! (Does not depend on input)
O(logn): for(int $i=n ; i>1 ; i=i / 2)$
$O(n):$ for (int $i=0 ; i<n ; i++)$
O(n logn): for(int i = 0 ; $\mathrm{i}<\mathrm{n}$; i++)

$$
\text { for(int } i=100 ; i>1 ; i=i / 2)
$$

$O\left(n^{2}\right):$ for(int $\left.i=0 ; i<n ; i++\right)$ for(int i $=0$; i $<n$ i $I++$
$O\left(2^{n}\right)$: Combinations - find all possible combinations of n elements e.g. $n=3$: $\left(\{,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\})=8=2^{3}\right.$

A visual comparison of growth rates

Growth Rates, Part One

Growth Rates, Part Two

250
—O(n)

- $O(n \log n)$
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$
200

150

100

50

Growth Rates, Part Three

[^0]To Give You A Better Sense...

9000

$$
\begin{aligned}
& \text { - O(1) } \\
& -\mathrm{O}(\log \mathrm{n}) \\
& \text { - O(n) } \\
& \text { - O(} n^{2} \text {) } \\
& -\mathrm{O}\left(2^{n}\right)
\end{aligned}
$$

Tight is more meaningful

If $T(n)$ is $O(n)$
It is also true that $T(n)$ is $O\left(n^{3}\right)$
And it is also true that $T(n)$ is $O(2 n)$
But what does it mean???

The closest Big-O is the most descriptive of the overall worst-case behavior

Tightening the bounds

Big-O: upper bound
$T(n)$ is $O(f(n))$
if there exist constants k and n_{0} such that for all $n \geq n_{0} T(n) \leq k f(n)$
Grows no faster than $f(n)$

Tightening the bounds

Big-O: upper bound
$T(n)$ is $O(f(n))$
if there exist constants k and \mathbf{n}_{0} such that for all $n \geq n_{0} T(n) \leq k f(n)$
Grows no faster than $f(n)$

Omega: lower bound
$T(n)$ is $\Omega(f(n))$
if there exist constants k and n_{0} such that for all $n \geq n_{0} T(n) \geq k f(n)$
Grows at least as fast as f(n)

Tightening the bounds

Theta: tight bound
$T(n)$ is $\Theta(f(n))$
Grows at the same rate as $\mathrm{f}(\mathrm{n})$: iff both $T(n)$ is $O(f(n))$ and $\Omega(f(n))$

A numerical comparison of growth rates

$\mathbf{f (n)}$	10	100	1,000	10,000	100,000	$1,000,000$
1	1	1	1	1	1	1
$\log _{2 n}$	3	6	9	13	16	19
n	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$n^{*} \log _{2 n}$	30	664	9,965	10^{5}	10^{6}	10^{7}
n^{2}	10^{2}	10^{4}	10^{6}	10^{8}	10^{10}	10^{12}
n^{3}	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}
$2 n$	10^{3}	10^{30}	10^{301}	$10^{3,010}$	$10^{30,103}$	$10^{301,030}$

What does Big-O describe?

"Long term" behavior of a function

If algorithm A has runtime $O(n)$ and algorithm B has runtime $O\left(n^{2}\right)$, for large inputs A will always be faster.

If algorithm A has runtime $O(n)$, doubling the size of the input will double the runtime

What can't Big-O describe?

The actual runtime of an algorithm

$$
\begin{aligned}
& 10^{100} n=O(n) \\
& 10^{-100} n=O(n)
\end{aligned}
$$

How an algorithm behaves on small input

$$
\begin{aligned}
& n^{3}=O\left(n^{3}\right) \\
& 10^{6}=O(1)
\end{aligned}
$$

Space Complexity

Similarly, you can think about the space complexity
How much space in memory (as a function of the size of the input)?

Examples later in the course.

To summarize Big-O

It is a means of describing the growth rate of a function

It ignores all but the dominant term

It ignores constants
Allows for quantitative ranking of algorithms
Allows for quantitative reasoning about algorithms

From now on, you will think about every algorithm in these terms!!!

Next time Pointers

[^0]: 9000
 $-\mathrm{O}\left(\mathrm{n}^{2}\right)$
 $-\mathrm{O}\left(\mathrm{n}^{3}\right)$
 $-\mathrm{O}\left(2^{\mathrm{n}}\right)$
 7000

 6000

 5000

 4000

 3000

 2000

 1000

