
Algorithm Efficiency

1

Tiziana Ligorio
Hunter College of The City University of New York

Announcements

Online Assessment Workshops Postponed

• First Session will be on Tuesday 2/20

• Revised schedule on Blackboard

Confirming: you CAN index an array or vector with
the increment/decrement operator in C++
std::cout << a[++x] ;

2

Recap

We implemented a Bag ADT

Using an Array data structure

Next using a Linked data structure

But first…

3

Today’s Plan

Algorithm Efficiency

4

Algorithm Efficiency

5

Scenario 1

You are using an application but it won’t complete
some operation…
whatever it is doing it’s taking way too long…

6

Scenario 1

You are using an application but it won’t complete
some operation…
whatever it is doing it’s taking way too long…

how “long” does that have to be for you to become
ridiculously frustrated?

7

Scenario 1

You are using an application but it won’t complete
some operation…
whatever it is doing it’s taking way too long…

how “long” does that have to be for you to become
ridiculously frustrated?

… probably not that long

8

Scenario 2

At your next super job with the company/research-center of your dreams
you are given a very difficult problem to solve

You work hard on it, find a solution, code it up and it works!!!!

Proudly you present it the next day

but…

9

Scenario 2

At your next super job with the company/research-center of your dreams you
are given a very difficult problem to solve

You work hard on it, find a solution, code it up and it works!!!!

Proudly you present it the next day

but…

Given some new (large) input it’s taking an awfully long time to complete
execution…

Well… sorry but your solution is no good!!!

10

You need to have a means to estimate/predict the
efficiency of your algorithms on unknown input.

11

What is a good solution?

How can we compare solutions
to a problem? (Algorithms)

12

What is a good solution?

13

Correct

If it’s not
correct it is not
a solution at all

What is a good solution?

14

Correct Efficient

Time Space

What is a good solution?

15

Correct Efficient

Time Space
We are going to
focus on time

How can we measure time
efficiency?

16

How can we measure time
efficiency?

17

Runtime?

Problems with actual
runtime for comparison

What computer are you using?
 Runtime is highly sensitive to hardware

18

Problems with actual
runtime for comparison

What computer are you using?
 Runtime is highly sensitive to hardware

What implementation are you using?
 Implementation details may affect runtime but are
 not reflective of algorithm efficiency

19

How should we measure
execution time?

20

How should we measure
execution time?

21

Number of “steps” or “operations”
as a function of the size of the input

How should we measure
execution time?

22

Number of “steps” or “operations”
as a function of the size of the input

Constant

Variable

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

23

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

24

What are the operations?
Let n be the number of items in the array

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

25

What are the operations?
Let n be the number of items in the array

initialization
comparison

increment

return

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

26

What are the operations?
Let n be the number of items in the array

initialization
comparison

increment

return

C0
C1

C2

C3

C4

C5

C6

Ci is some constant number

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

27

What are the operations?
Let n be the number of items in the array

initialization
comparison

increment

return

C0
C1

C2

C3

C4

C5

C6

n

Ci is some constant number

n is the number of items

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

28

What are the operations?
Let n be the number of items in the array

initialization
comparison

increment

return

C0
C1

C2

C3

C4

C5

C6

C0+ C1 + n (C2 + C3 + C4 + C5) + C6 = C7 + nC8

n

operations

template<class T>
int ArrayBag<T>::getFrequencyOf(const T& an_entry) const
{
 int frequency{0};
 int current_index{0}; // array index currently being inspected
 while (current_index < item_count_)
 {
 if (items_[current_index] == an_entry)
 {
 frequency++;
 } // end if
 current_index ++; // increment to next entry
 } // end while
 return frequency;
} // end getFrequencyOf

29

What are the operations?
Let n be the number of items in the array

initialization
comparison

increment

return

C0
C1

C2

C3

C4

C5

C6

C0+ C1 + n (C2 + C3 + C4 + C5) + C6 = C7 + nC8

n

operations

How should we measure
execution time?

30

Number of “steps” or “operations”
as a function of the size of the input

Constant

Variable

Lecture Activity

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items_[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

31

Identify the steps and write down an expression for execution time

Lecture Activity

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items_[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

32

Identify the steps and write down an expression for execution time

Was this tricky?

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items_[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

33

Identify the steps and write down an expression for execution time

n here is the size of the ArrayBag

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items_[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

34

Identify the steps and write down an expression for execution time

n here is the size of the ArrayBag

Maybe stop in
the middle

Maybe stop at
end of loop

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items_[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

35

Identify the steps and write down an expression for execution time

Execution completes in at most:
c0n+c1 operations

In the
WORST CASE

Types of Analysis
Best case analysis: running time under best input (e.g., in linear
search item we are looking for is the first) - not reflective of overall
performance)

Average case analysis: assumes equal probability of input (usually
not the case)

Expected case analysis: assumes probability of occurrence of input
is known or can be estimated, and if it were possible may be too
expensive

Worst case analysis: running time under worst input, gives upper
bound, it can’t get worse, good for sleeping well at night!

36

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

37

Identify the steps and write down an expression for execution time

Execution completes in at most:
c0n+c1 operations

Some constant number
of operations repeated

inside the loop

Some constant number
of operations performed

outside the loop

template<class T>  
int ArrayBag<T>::getIndexOf(const T& target) const  
{  

bool found = false;  
 int result = -1;  
 int search_index = 0;  
  
 // If the bag is empty, item_count_ is zero, so loop is skipped 
 while (!found && (search_index < item_count_))  
 {  
 if (items[search_index] == target)  
 {  
 found = true;  
 result = search_index;  
 }  
 else  
 {  
 search_index ++;  
 } // end if  
 } // end while  

return result;  
} // end getIndexOf

38

Identify the steps and write down an expression for execution time

Execution completes in at most:
c0n+c1 operations

Some constant number
of operations repeated

inside the loop

Some constant number
of operations performed

outside the loop

The number of times
the loop is repeated,
i.e. the size of Bag

Observation

Don’t need to explicitly compute the constants ci  

4n + 1000

 n + 137

Dominant term is sufficient to explain overall
behavior (in this case linear)

39

Big-O Notation

Ignores everything except dominant term

Examples:
 T(n) = 4n + 4 = O(n)
 T(n) = 164n + 35 = O(n)
 T(n) = n2 + 35n + 5 = O(n2)
 T(n) = 2n3 + 98n2 + 210 = O(n3)
 T(n) = 2n + 5 = O(2n)

40

Notation: describes the overall
behavior

Big-O Notation

Ignores everything except dominant term

Examples:
 T(n) = 4n + 4 = O(n)
 T(n) = 164n + 35 = O(n)
 T(n) = n2 + 35n + 5 = O(n2)
 T(n) = 2n3 + 98n2 + 210 = O(n3)
 T(n) = 2n + 5 = O(2n)

41

T(n) is the running time

n is the size of the input

Notation: describes the overall
behavior

Big-O Notation

Ignores everything except dominant term

Examples:
 T(n) = 4n + 4 = O(n)
 T(n) = 164n + 35 = O(n)
 T(n) = n2 + 35n + 5 = O(n2)
 T(n) = 2n3 + 98n2 + 210 = O(n3)
 T(n) = 2n + 5 = O(2n)

42

Big-O describes the overall
behavior

Let T(n) be the running time of an
algorithm measured as number of

operations given input of size n.
T(n) is O(f(n))

if it grows no faster than f(n)

Big-O Notation

Ignores everything except dominant term

Examples:
 T(n) = 4n + 4 = O(n)
 T(n) = 164n + 35 = O(n)
 T(n) = n2 + 35n + 5 = O(n2)
 T(n) = 2n3 + 98n2 + 210 = O(n3)
 T(n) = 2n + 5 = O(2n)

43

Big-O describes the overall
behavior

Let T(n) be the running time of an
algorithm measured as number of

operations given input of size n.
T(n) is O(f(n))

if it grows no faster than f(n)

But
164n+35 > n !!??!!

Big-O Notation

Ignores everything except dominant term

Examples:
 T(n) = 4n + 4 = O(n)
 T(n) = 164n + 35 = O(n)
 T(n) = n2 + 35n + 5 = O(n2)
 T(n) = 2n3 + 98n2 + 210 = O(n3)
 T(n) = 2n + 5 = O(2n)

44

More formally:
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0

 T(n) ≤ kf(n)

Big-O describes the overall
behavior

45

More formally:
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0,

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10
T(n) is O(n2)

For k=3 and n≥1.5

46

More formally:
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0,

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10
T(n) is O(n2)

For k=3 and n≥1.5

This is why we can
look at dominant

term only to explain
behavior

Big-O describes the overall growth rate of an
algorithms for large n

47

Proving Big-O Relationship

Apply definition of Big-O to prove that T(n) is O(f(n))
for particular functions T and f

Do so by choosing k and n0 s.t. for all n ≥ n0,
T(n) ≤ kf(n)

48

Example:
Suppose T(n) = (n+1)2
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0,
(n+1)2 ≤ kn2

Proving Big-O Relationship

49

Example:
Suppose T(n) = (n+1)2
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0,
(n+1)2 ≤ kn2

Expand (n+1)2 = n2 + 2n + 1
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2

Proving Big-O Relationship

50

f(n)

Proving Big-O Relationship

Example:
Suppose T(n) = (n+1)2
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0,
(n+1)2 ≤ kn2

Expand (n+1)2 = n2 + 2n + 1
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2

Thus if we choose n0 =1 and k = 4 we have
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

51
T(n) k

Proving Big-O Relationship
Example:
Suppose T(n) = (n+1)2
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for
all n ≥ n0,
(n+1)2 ≤ kn2

Expand (n+1)2 = n2 + 2n + 1
Observe that, as long as n ≥1, n ≤ n2
and 1 ≤ n2

Thus if we choose n0 =1 and k = 4 we
have
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

52

Proving Big-O Relationship

Not Unique:
Could also choose n0 =3 and
k = 2 because
(n+1)2 ≤ 2n2 for all n ≥ 3

For proof one is enough

53

Complexity classes
O(1): Constant worst-case running time

O(log n): Logarithmic worst-case running time

O(n): Linear worst-case running time

O(n logn): Log-Linear worst-case running time

O(n2): Quadratic worst-case running time

O(n3): Cubic worst-case running time

O(nk): Polynomial worst-case running time

O(cn): Exponential worst-case running time (too slow!)

54

Examples
O(1): Hello world! (Does not depend on input)

O(logn): for(int i = n; i > 1; i= i/2)

O(n): for(int i = 0; i < n; I++)

O(n logn): for(int i = 0; i < n; i++)  
 for(int i = 100; i > 1; i= i/2)

O(n2): for(int i = 0; i < n; i++)  
 for(int i = 0; i < n; I++)

O(2n): Combinations - find all possible combinations of n elements
e.g. n=3: ({}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}) = 8 = 23

55

A visual comparison of
growth rates

56

57

0

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)

O(log n)

O(n)

58

0

50

100

150

200

250

Growth Rates, Part Two

O(n)

O(n log n)

O(n²)

59

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n²)

O(n³)

O(2ⁿ)

60

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(n³)

O(2ⁿ)

Tight is more meaningful

If T(n) is O(n)
It is also true that T(n) is O(n3)
And it is also true that T(n) is O(2n)
But what does it mean???

The closest Big-O is the most descriptive of the
overall worst-case behavior

61

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(n³)

O(2ⁿ)

Tightening the bounds
Big-O: upper bound
 T(n) is O(f(n))
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≤ k f(n)
 Grows no faster than f(n)

62

Tightening the bounds
Big-O: upper bound
 T(n) is O(f(n))
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≤ k f(n)
 Grows no faster than f(n)

Omega: lower bound
 T(n) is Ω(f(n))
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≥ k f(n)
 Grows at least as fast as f(n)

63

Tightening the bounds
Theta: tight bound
 T(n) is Θ(f(n))
 Grows at the same rate as f(n) : iff both T(n) is O(f(n)) and Ω(f(n))

64

A numerical comparison of
growth rates

65

66

10 100 1,000 10,000 100,000 1,000,000

1 1 1 1 1 1 1

log2n 3 6 9 13 16 19

n 10 102 103 104 105 106

n * log2n 30 664 9,965 105 106 107

n2 102 104 106 108 1010 1012

n3 103 106 109 1012 1015 1018

2n 103 1030 10301 103,010 1030,103 10301,030

n
f(n)

What does Big-O describe?

“Long term” behavior of a function

 If algorithm A has runtime O(n) and algorithm B
 has runtime O(n2), for large inputs A will
 always be faster.

 If algorithm A has runtime O(n), doubling the size
 of the input will double the runtime

67

Compare behavior
of 2 algorithms

Analyze algorithm behavior
with growing input

What can’t Big-O describe?

The actual runtime of an algorithm
 10100n = O(n)
 10-100n = O(n)

How an algorithm behaves on small input
 n3 = O(n3)
 106 = O(1)

68

Space Complexity

Similarly, you can think about the space complexity

How much space in memory (as a function of the size
of the input)?

Examples later in the course.

69

To summarize Big-O

It is a means of describing the growth rate of a
function

It ignores all but the dominant term

It ignores constants

Allows for quantitative ranking of algorithms

Allows for quantitative reasoning about algorithms

70

From now on, you will think
about every algorithm in these

terms!!!

71

Next time Pointers

72

