
CSCI 235
Software Design & Analysis II
Hunter College - Spring 2024 

Programming Guidelines

It is extremely important to follow these guidelines. Failure to follow them will result
in a lower grade or no credit at all for your assignment. Read the following carefully!

These are general submission instructions. You should also follow closely the
instructions on each project specification for details specific to individual programming
projects.

All programming projects must be submitted on Gradescope (via Github Classroom,
details in the specification for Project 1) no later than the due date. You have been
sent email invitations to Gradescope. Make sure you login to your Gradescope
account right away. If you have problems logging into Gradescope, submit a request
on Ed Discussion (comment to related post there) or seek help from the UTAs
immediately during tutoring sessions.

All programming projects must be submitted by 11pm on the due date.

No late assignments will be accepted. You may however submit multiple times before
the due date and only the last submission will be graded. So be proactive and submit
early, this will help you find out if your project has problems and still give you time to
fix it.

Although Gradescope allows multiple submissions, it is not a platform for testing
and/or debugging and it should not be used for that. You MUST test and debug
your program locally.

While you are encouraged to discuss project assignments with others and work in
groups, all work submitted must be your own. You MAY NOT give your solution to a
classmate or ask another student to see their solution. You MAY NOT ask another

student or UTA to debug your code. Sometimes it may be appropriate to use a small
snippet of code from some other source, but you must cite it (add a comment citing in
detail the source of the code) — you must always do this whenever you find yourself
using or adapting other’s code. What about generative AI? You may use it as a starting
point, but you must cite it, and you must be very careful, it makes mistakes all the
time! It makes mistakes that might be difficult to detect. If you use AI generated code,
you must thoroughly test it and debug it, which means you must thoroughly
understand it. Be careful, it may change your experience with coding, which does not
reflect the abilities that will be expected of you on a technical interview (can’t use
ChatGPT on your Google interview, not quite yet). You may not post your code where
it is accessible to others, and you may not seek help from online forums. As a rule of
thumb, you must type and debug your code without directly copying someone
else’s code entirely. For the first incident of cheating or plagiarism your grade will
be a 0 and it will not be dropped as the lowest. For the second incident, you will
fail the class. We report all incidents to the Office of Student Affairs.

Every program must be professionally documented. Every distinct source code file
must contain a preamble with the file's title, author, brief description, date of creation.
All functions must have a preamble containing comments for each parameter, where
appropriate pre and post conditions and return values. You should strive for self-
commenting code. However, all nontrivial algorithms must be documented in plain
English in a multiline comment block. All nontrivial declarations must have adjoining,
brief comments. Proper documentation is worth 15% of your project’s grade (unless
differently specified the project description).

Please note that all programming project submissions must compile and run with
g++ without issue on the Linux lab machines on the 10th floor of Hunter North.
These computers provide a common platform to evaluate program execution, free of
issues related to OS or IDE. You should always confirm that your assignment code
successfully compiles and executes on these machines before submitting to
Gradescope. “But it ran on my machine!” is not a valid excuse for a submission that
does not compile. You have all been given accounts on these machines. If you receive
an email about a new linux account, follow instructions. If you already have an
account you will not receive an email and must reclaim your account within two
weeks of the beginning of class by typing touch spring.2024 in terminal after

logging in. For more instructions follow this link: http://compsci.hunter.cuny.edu/
~csdir/

If you are working on Windows, you may follow instructions on this tutorial: http://
tiny.cc/2p0jvz . If you are working on Mac you can access the terminal in Applications/
Utilities. If you are working in Linux a terminal is also available.

You can remotely login to the lab machines as follows (in a
terminal window do the following) 

1. To upload your programs on one of the cslab machines you can use sftp in order to
transfer your code to eniac. First navigate to the local directory where the files you
want to upload are. Then to sftp to the sever type:
sftp your_username@eniac.cs.hunter.cuny.edu
You can create or navigate through directories there to organize your files (see
review of shell commands below), and then upload your files by typing:
put filename  
To upload multiple files at the same time you can use:
mput filename1 filename2 …

2. Once you have uploaded all your files type exit, that will bring you back to your
local machine.

3. To compile and run your code on the lab machine you must first ssh into the
server by typing:
ssh your_username@eniac.cs.hunter.cuny.edu  
Username are case sensitive.

4. type your password (note that when entering a password no characters will appear
on the screen). Passwords are case sensitive.

5. Now you are at a gateway machine that is called eniac. Do not do any processing
on eniac. Just ssh through eniac to one of the machines in the lab by typing:
ssh your_username@cslabX.cs.hunter.cuny.edu, where X is a number 1
through 29. You can pick any machine. If the machine is down you can try another
machine. For instance, to login to the 2nd machine type:
ssh your_username@cslab2.cs.hunter.cuny.edu

6. All cslabX machines and eniac see the same directories for your account. That
means that you see the same files on all machines.

http://compsci.hunter.cuny.edu/~csdir/
http://compsci.hunter.cuny.edu/~csdir/
http://tiny.cc/2p0jvz
http://tiny.cc/2p0jvz

7. Now that you are logged into a Linux machine in the lab you can remotely compile
and run your program with g++ (see the next section).

To learn more about logging in remotely, using Linux, following the lab rules, and
dealing with possible issues, visit http://compsci.hunter.cuny.edu/~csdir/

Compiling your code with g++

Separate compilation: We are now working with multiple source files that must be
compiled into a single executable. Assume your programming project consists of the
following files: ClassA.hpp, ClassA.cpp, ClassB.hpp, ClassB.cpp, program1.cpp,
main.cpp

You compile only the .cpp files.

To compile your program with g++, at a terminal window type:

g++ -o myprogram —std=c++17 ClassA.cpp ClassB.cpp program1.cpp
main.cpp

This will produce an executable file named myprogram. To run the compiled program
type in terminal:

./myprogram

Alternatively, if you compile the program without giving the output file name (leaving
out the command option -o myprogram), the executable file will be called a.out, which
you can execute the same way:

./a.out
Makefile: we will distribute a Makefile with the starter code for our projects. You
must understand Makefiles in order to modify them for testing your code before
submission according to your needs. If you have never used Makefiles before, here
some resources:

• A Short Introduction to Makefile (by Zhiliang Xu)

• Understanding Make (by Alex Allain)

http://compsci.hunter.cuny.edu/~csdir/
https://www3.nd.edu/~zxu2/acms60212-40212/Makefile.pdf
https://www.cprogramming.com/tutorial/makefiles.html

A very quick review of some shell commands 

You need to know just a few commands to work comfortably in a Unix terminal:
ls, cd, pwd, mkdir, cp, mv, rm.

A brief summary:

These are some useful directory shortcuts:
  . the current directory
  .. the parent directory of the current
  ~ the home directory

For example:
  cd .. go to the parent directory (one level up)

Here are some useful references:

Unix tutorial: http://www.ee.surrey.ac.uk/Teaching/Unix/unix1.html

Become a Command Line Ninja: https://lifehacker.com/5743814/become-a-command-
line-ninja-with-these-time-saving-shortcuts

pwd print the current working
directory

ls list files in the current directory

ls path/to/a/directory list files in the directory

cd path/to/a/directory change directory

mkdir newdirectoryname create new directory

cp file1 file2 copy file1 and call the copy file2

mv file1 file2 rename (move) file1 to file2

rmdir directoryname remove empty directory

rm file remove file

chmod <options> file change file permissions (read +r, write +w, execute +x)

man command documentation about the command

http://www.ee.surrey.ac.uk/Teaching/Unix/unix1.html
https://lifehacker.com/5743814/become-a-command-line-ninja-with-these-time-saving-shortcuts
https://lifehacker.com/5743814/become-a-command-line-ninja-with-these-time-saving-shortcuts
https://lifehacker.com/5743814/become-a-command-line-ninja-with-these-time-saving-shortcuts

	CSCI 235
	Software Design & Analysis II
	Hunter College - Spring 2024
	Programming Guidelines
	You can remotely login to the lab machines as follows (in a terminal window do the following)
	Compiling your code with g++
	A very quick review of some shell commands

